

# Trane XStream™ eXcellent

### Water-cooled Chillers with High Speed Centrifugal Compressors

XStream eXcellent is a new model within Trane's XStream range able to reach market-leading Energy Efficiency Ratio (EER) and European Seasonal Energy Efficiency Ratio (ESEER) with lower sound levels.

This model GVWF is available with a choice of refrigerants: R134a or R1234ze which has a GWP value of less than one to exceed current F-Gas legislation requirements and help customers reduce their carbon dioxide (CO<sub>2</sub>) emissions and achieve extreme part load and full load efficiencies.

#### XStream eXcellent chillers are suited for critical environments like



Office buildings



Pharmaceutical industry



Healthcare



Plastic industry



Data Centers



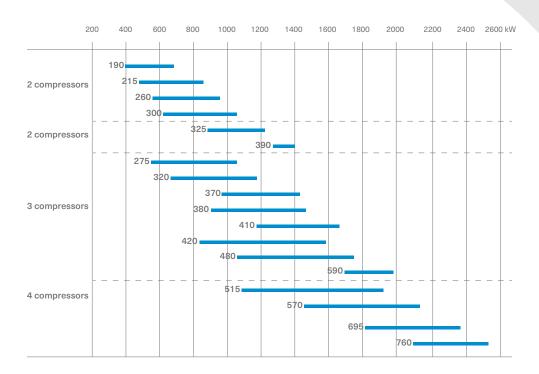
Hospitality industry



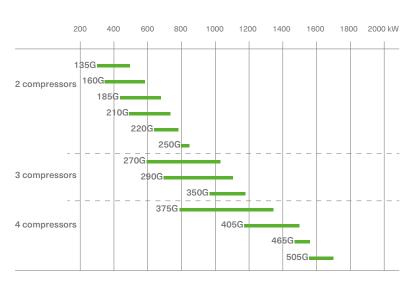
Automotive industry



**District Cooling** 


# Range description




### A model for every need

Trane's XStream eXcellent provides a wide capacity range up to 2.6 MW with industry-leading part load and full load efficiencies.

R134a







# XStream eXcellent chillers

### Excellence is standard

### Standard on all models

- Multiple compressors (2, 3 or 4)
- Double refrigerant circuit
- · Economizer circuit
- EMC filter to avoid harmonic transfer to compressor(s)



#### **Smart**

Easy operation thanks to smart controls and a user-friendly touchscreen interface.



### **Energy Efficient**

Choose from three different efficiency tiers to respond to every building or process requirement.



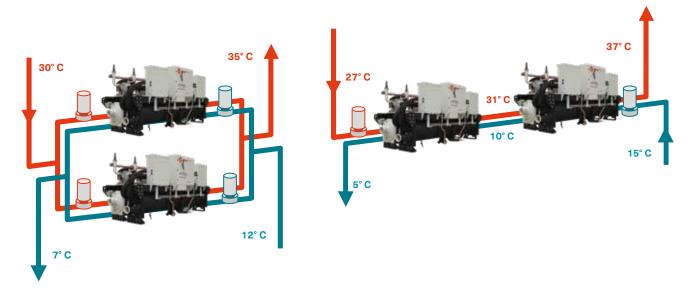
#### Green

Two different refrigerant alternatives: R134a and HFO R1234ze with GWP<1.



#### Reliable

No compromise: You can count on Trane's legendary reliability.






### Multiple chiller plants



Overall efficiency can be further improved by using an alternative chiller lay-out to the conventional parallelpiped configuration. For example, chillers can be piped in series, on the evaporator side, on the condenser side or both.



#### This layout provides the opportunity for

- Lower chilled water design temperature with larger ΔT
- Reduced design flow
- Installation and operational cost savings by fewer installed pumps and valves, reduced pipe diameters and chiller downsizing
- · Maximized system efficiency
- Continuous temperatures allow better stability of controls

By combining series configuration with Variable Primary Flow (VPF) it is possible to further increase system efficiency.

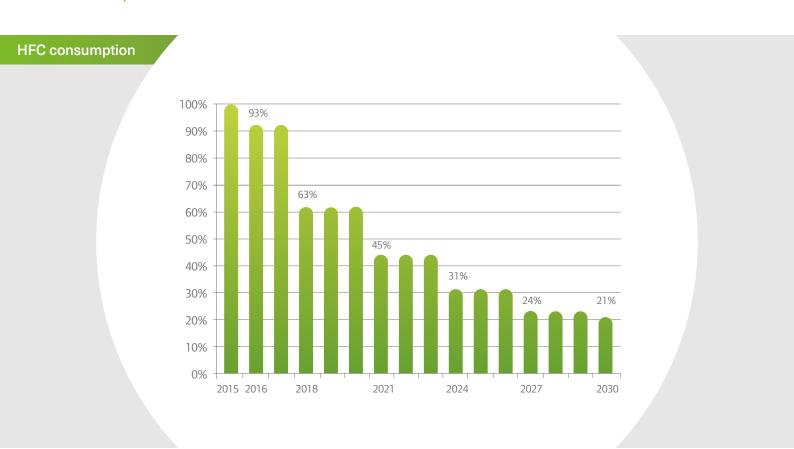
### Variable Primary Flow (VPF) capabilities



VPF systems provide building owners with multiple cost savings derived directly from pump operation. The XStream series is designed to make VPF easy to use.

- The evaporator on the XStream series can run safely with up to 50% water flow reduction.
- The microprocessor and capacity control algorithms are designed to handle a maximum of 10% change in water flow rate per minute in order to maintain ±0.3°C temperature control leaving the evaporator.
- For applications in which system energy savings are the priority and tight temperature control is classified as +/- 1.1°C, up to 30% change in flow per minute is possible.
- With the help of a TRANE software analysis tool, you can determine whether the anticipated energy savings justify the use of VPF in a particular application.

# The Future of F-Gases


The fluorinated refrigerants phase-down, as defined in the new EU F-Gas Regulation, is a step-by-step approach where the quantities of HFCs expressed in  $\mathrm{CO}_2$  equivalent that are placed on the market are gradually reduced. As a result of the phase-down, HFC consumption will be reduced by 79% by 2030.

This is an unprecedented reduction and means that industry and users need to make, over time, the

transition to refrigerants with a lower global warming potential.

Trane, recognized as a leading innovator in the HVAC industry, introduces this new, next generation, lower GWP refrigerant in Sintesis and other products to be front running in the marketplace and to support your strong sustainability objectives.

Trane - provider of sustainable solutions.



Baseline value (100%) is the annual average of total quantity of CO<sub>2</sub> equivalents placed on the EU market from 2009 to 2012.

# An environmentally sustainable solution

# **EcoWise**<sub>TM</sub>

XStream Excellent chillers with low GWP refrigerants are part of the EcoWise™ portfolio of products that are designed to lower their environmental impact with next-generation, low global warming potential (GWP) refrigerants and high-efficiency operation.



#### New R1234ze

Ozone depletion potential = 0 Low global warming potential (GWP<1)

| Refrigerant | Global Warming Potential (GWP) |
|-------------|--------------------------------|
| R410A       | 1924                           |
| R407C       | 1624                           |
| R134a       | 1300                           |
| R513A       | 572                            |
| R454B       | 467                            |
| R515B       | 299                            |
| R1234ze     | <1                             |



# **Features**

### Innovative solutions to your needs

# Two different refrigerant alternatives

- R134a
- R1234ze with GWP<1

### 1 High speed centrifugal compressor

- Oil free and silent operation thanks to magnetic bearings
- Integrated Variable Frequency Drive
- · Soft starter module
- · Only one moving part



### Trane combined smart control and interface\*

- Leading TD7 touch screen with 7" color display
- · Clear display of critical information
- · Monitor settings, data trending, reports and alarms
- Simple, intuitive navigation
- · Effective operation, monitoring and management
- · Durable construction for both indoor and outdoor use





- Trane patented Compact -High performance - Integrated design - Low charge (CHIL) flooded evaporator\*
  - Double pass or counter flow single pass, depending on unit size
  - · Reduced refrigerant volume
  - Increased efficiency
  - · Reduced carbon footprint





### 4 Dual refrigerant circuit Multi Compressor

- Provide redundancy
- · Reduce the impact of any failure

# General specifications

### General Data for cooling performances

|                                                |                     | GVWF    | GVWF G  |
|------------------------------------------------|---------------------|---------|---------|
| Condenser leaving water temperature (min/max)  | (°C) Low Lift units | +20 / + | -55     |
|                                                | High Lift units     | +20 / + | -42     |
| Evaporator leaving water temperature (min/max) | (°C)                | +5 / +  | 20      |
| Power supply                                   | (V/Ph/Hz)           | 400/3/  | /50     |
| Refrigerant                                    |                     | R134a   | R1234ze |

### **GVWF**



| Unit size                         |         | GVWF 190 | GVWF 215 | GVWF 260 | GVWF 300 | GVWF 325 | <b>GVWF 390</b> | GVWF 275 | GVWF 320 | GVWF 370 |
|-----------------------------------|---------|----------|----------|----------|----------|----------|-----------------|----------|----------|----------|
| Compressor Lift                   |         | High     | High     | High     | Low      | Low      | Low             | High     | High     | Low      |
| Maximum Gross Capacity (1)        | (kW)    | 698      | 838      | 977      | 1052     | 1215     | 1388            | 1054     | 1184     | 1420     |
| Rated performances (1)            |         |          |          |          |          |          |                 |          |          |          |
| Gross Cooling Capacity            | (kW)    | 594      | 712      | 830      | 894      | 1032     | 1179            | 896      | 1006     | 1207     |
| Gross EER (1)                     |         | 5,23     | 5,25     | 5,34     | 5,61     | 5,74     | 5,82            | 5,42     | 5,34     | 5,70     |
| Net Cooling Capacity (1)(2)       | (kW)    | 593      | 711      | 829      | 893      | 1031     | 1178            | 895      | 1005     | 1206     |
| Net EER (1)(3)(4)                 |         | 4,98     | 5,02     | 5,13     | 5,35     | 5,59     | 5,71            | 5,27     | 5,18     | 5,60     |
| SEER (4)                          |         | 8,10     | 8,30     | 8,13     | 8,33     | 9,13     | 9,35            | 9,10     | 8,98     | 9,45     |
| Space Cooling Efficiency ηs,c (3) | (%)     | 321      | 329      | 322      | 330      | 362      | 371             | 361      | 356      | 375      |
| SEPR High Temperature (4)         |         | 8,54     | 8,81     | 9,08     | 9,50     | 10,24    | 10,85           | 9,15     | 9,16     | 9,99     |
| Number of refrigerant circuits    |         | 2        | 2        | 2        | 2        | 2        | 2               | 2        | 2        | 2        |
| Number of compressors             |         | 2        | 2        | 2        | 2        | 2        | 2               | 3        | 3        | 3        |
| Sound power level (5)             | (dB(A)) | 91       | 91       | 93       | 96       | 98       | 100             | 92       | 93       | 98       |
| Weights and dimensions            |         |          |          |          |          |          |                 |          |          |          |
| Length                            | (mm)    | 2976     | 2976     | 2976     | 3476     | 4730     | 4804            | 4730     | 4730     | 4804     |
| Width                             | (mm)    | 1125     | 1125     | 1125     | 1125     | 1700     | 1800            | 1700     | 1700     | 1800     |
| Height                            | (mm)    | 1920     | 1920     | 1920     | 1920     | 2032     | 2135            | 2032     | 2032     | 2135     |
| Operating Weight                  | (kg)    | 2310     | 2810     | 3020     | 3370     | 4094     | 4954            | 4110     | 4102     | 5177     |

| Unit size                             | GVWF 380 | GVWF 410 | <b>GVWF 420</b> | <b>GVWF 480</b> | <b>GVWF 590</b> | <b>GVWF</b> 515 | <b>GVWF 570</b> | GVWF 695 | <b>GVWF 760</b> |
|---------------------------------------|----------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|-----------------|
| Compressor Lift                       | High     | Low      | Low             | Low             | Low             | High            | Low             | Low      | Low             |
| Maximum Gross Capacity (1) (kW)       | 1446     | 1684     | 1583            | 1763            | 1973            | 1933            | 2126            | 2349     | 2529            |
| Performances at Optimum SEER (1)      |          |          |                 |                 |                 |                 |                 |          |                 |
| Gross Cooling Capacity (kW)           | 1228     | 1431     | 1345            | 1498            | 1861            | 1642            | 2126            | 1995     | 2529            |
| Gross EER (1)                         | 5,50     | 5,72     | 5,61            | 5,62            | 5,61            | 5,56            | 5,15            | 5,75     | 5,49            |
| Net Cooling Capacity (1)(2) (kW)      | 1227     | 1430     | 1344            | 1497            | 1860            | 1641            | 2125            | 1995     | 2526            |
| Net EER (1)(3)(4)                     | 5,32     | 5,58     | 5,37            | 5,47            | 5,52            | 5,39            | 4,98            | 5,65     | 5,36            |
| SEER (4)                              | 9,13     | 9,23     | 9,18            | 9,20            | 9,50            | 8,98            | 8,78            | 9,55     | 8,85            |
| Space Cooling Efficiency ηs,c (3) (%) | 362      | 366      | 364             | 365             | 377             | 356             | 348             | 379      | 351             |
| SEPR High Temperature (4)             | 9,24     | 9,95     | 9,46            | 9,70            | 9,53            | 9,63            | 8,79            | 10,29    | 9,28            |
| Number of refrigerant circuits        | 2        | 2        | 2               | 2               | 2               | 2               | 2               | 2        | 2               |
| Number of compressors                 | 3        | 3        | 3               | 3               | 3               | 4               | 4               | 4        | 4               |
| Sound power level (5) (dB(A           | )) 94    | 98       | 98              | 100             | 102             | 96              | 99              | 101      | 103             |
| Weights and dimensions                |          |          |                 |                 |                 |                 |                 |          |                 |
| Length (mm                            | 4730     | 4804     | 4730            | 4804            | 5245            | 4804            | 4804            | 5444     | 5444            |
| Width (mm                             | 1700     | 1800     | 1700            | 1800            | 2141            | 1800            | 1800            | 2141     | 2141            |
| Height (mm                            | 2032     | 2135     | 2032            | 2135            | 2315            | 2135            | 2135            | 2315     | 2315            |
| Operating Weight (kg)                 | 4317     | 5177     | 4317            | 5177            | 8076            | 5401            | 5574            | 8263     | 8323            |

<sup>(1)</sup> Evaporator 12/7°C and 0.0  $m^2 K/kW$ , and condenser at 30/35°C and 0.0  $m^2 K/kW$ 

<sup>(2)</sup> Net performances calculated as per EN 14511-2013.

<sup>(3)</sup> ns.c / SEER as defined in Directive 2009/125/EC of the European Parliament and of the Council with regard to Ecodesign requirements for Comfort Chillers with 2000 kW maximum capacity - COMMISSION REGULATION (EU) N° 2016/2281 of 20 December 2016

<sup>(4)</sup> SEPR High temperature as defined in Directive 2009/125/EC of the European Parliament and of the Council with regard to Ecodesign requirements for Comfort Chillers with 2000 kW maximum capacity - COMMISSION REGULATION (EU) N° 2016/2281 of 20 December 2017

<sup>(5)</sup> At max capacity and in accordance with ISO9614



### **GVWF G**



| Unit size                         |         | GVWF 135 G | GVWF 160 G | GVWF 185 G | GVWF 210 G | GVWF 220 G | GVWF 250 G | GVWF 270 G |
|-----------------------------------|---------|------------|------------|------------|------------|------------|------------|------------|
| Compressor Lift                   |         | High       | High       | High       | Low        | Low        | Low        | High       |
| Maximum Gross Capacity (1)        | (kW)    | 502        | 595        | 689        | 751        | 782        | 827        | 1034       |
| Performances at Optimum SEER (1   | )       |            |            |            |            |            |            |            |
| Gross Cooling Capacity            | (kW)    | 425        | 506        | 586        | 733        | 779        | 825        | 878        |
| Gross EER (1)                     |         | 5,33       | 5,28       | 5,40       | 5,11       | 5,19       | 5,36       | 5,67       |
| Net Cooling Capacity (1)(2)       | (kW)    | 425        | 505        | 585        | 732        | 778        | 824        | 877        |
| Net EER (1)(3)(4)                 |         | 5,08       | 5,06       | 5,16       | 4,88       | 5,02       | 5,15       | 5,51       |
| SEER (4)                          |         | 8,05       | 8,00       | 8,05       | 7,80       | 7,85       | 7,50       | 9,18       |
| Space Cooling Efficiency ηs,c (3) | (%)     | 319        | 317        | 319        | 309        | 311        | 297        | 364        |
| SEPR High Temperature (4)         |         | 8,62       | 8,77       | 8,98       | 8,44       | 8,90       | 9,21       | 9,65       |
| Number of refrigerant circuits    |         | 2          | 2          | 2          | 2          | 2          | 2          | 2          |
| Number of compressors             |         | 2          | 2          | 2          | 2          | 2          | 2          | 3          |
| Sound power level (5)             | (dB(A)) | 90         | 91         | 92         | 95         | 96         | 98         | 93         |
| Weights and dimensions            |         |            |            |            |            |            |            |            |
| Length                            | (mm)    | 2976       | 2976       | 2976       | 2976       | 2976       | 3476       | 4730       |
| Width                             | (mm)    | 1125       | 1125       | 1125       | 1125       | 1125       | 1125       | 1700       |
| Height                            | (mm)    | 1920       | 1920       | 1920       | 1920       | 1920       | 1920       | 2032       |
| Operating Weight                  | (kg)    | 2130       | 2280       | 2420       | 2740       | 3000       | 3380       | 4025       |

| Unit size                         |         | GVWF 290 G | GVWF 350 G | GVWF 375 G | GVWF 405 G | GVWF 465 G | GVWF 505 G |
|-----------------------------------|---------|------------|------------|------------|------------|------------|------------|
| Compressor Lift                   |         | Low        | Low        | High       | Low        | Low        | Low        |
| Maximum Gross Capacity (1)        | (kW)    | 1133       | 1162       | 1379       | 1511       | 1538       | 1704       |
| Performances at Optimum SEER (1)  |         |            |            |            |            |            |            |
| Gross Cooling Capacity            | (kW)    | 963        | 1120       | 1172       | 1477       | 1538       | 1700       |
| Gross EER (1)                     |         | 5,69       | 5,34       | 5,79       | 5,36       | 5,39       | 5,78       |
| Net Cooling Capacity (1)(2)       | (kW)    | 962        | 1119       | 1171       | 1476       | 1538       | 1699       |
| Net EER (1)(3)(4)                 |         | 5,55       | 5,19       | 5,64       | 5,21       | 5,27       | 5,70       |
| SEER (4)                          |         | 9,25       | 8,53       | 9,23       | 9,08       | 8,95       | 9,28       |
| Space Cooling Efficiency ηs,c (3) | (%)     | 367        | 338        | 366        | 360        | 355        | 368        |
| SEPR High Temperature (4)         |         | 9,66       | 9,34       | 9,96       | 9,03       | 9,35       | 9,98       |
| Number of refrigerant circuits    |         | 2          | 2          | 2          | 2          | 2          | 2          |
| Number of compressors             |         | 3          | 3          | 4          | 4          | 4          | 4          |
| Sound power level (5)             | (dB(A)) | 96         | 100        | 95         | 98         | 101        | 102        |
| Weights and dimensions            |         |            |            |            |            |            |            |
| Length                            | (mm)    | 4730       | 4730       | 4804       | 4804       | 4804       | 5444       |
| Width                             | (mm)    | 1700       | 1700       | 1800       | 1800       | 1800       | 2141       |
| Height                            | (mm)    | 2032       | 2032       | 2135       | 2135       | 2135       | 2315       |
| Operating Weight                  | (kg)    | 4085       | 4304       | 5002       | 5128       | 5556       | 8239       |

<sup>(1)</sup> Evaporator 12/7°C and 0.0  $m^2 K/kW$ , and condenser at 30/35°C and 0.0  $m^2 K/kW$ 

<sup>(2)</sup> Net performances calculated as per EN 14511-2013.

<sup>(3)</sup> ns.c / SEER as defined in Directive 2009/125/EC of the European Parliament and of the Council with regard to Ecodesign requirements for Comfort Chillers with 2000 kW maximum capacity - COMMISSION REGULATION (EU) N° 2016/2281 of 20 December 2016

<sup>(4)</sup> SEPR High temperature as defined in Directive 2009/125/EC of the European Parliament and of the Council with regard to Ecodesign requirements for Comfort Chillers with 2000 kW maximum capacity - COMMISSION REGULATION (EU) N° 2016/2281 of 20 December 2017

(5) At max capacity and in accordance with ISO9614

### The Trane advantage





Trane is recognized as a world leader with over **100 years of experience** in creating and sustaining safe, comfortable and energy efficient environments while improving the performance of buildings and processes around the world.

Trane innovative solutions optimize indoor environments with the **broadest portfolio** of energy efficient heating, ventilating and air conditioning systems, building services, parts support and advanced controls in the industry.

To ensure your equipment continues to work at its optimum, throughout the life of the building, Trane provides a full range of service solutions, combined with in-house expertise and the **most extensive service and support network** in the industry.

And with Trane's extensive rental fleet all your temporary cooling and heating needs are served: we provide continuous cooling or heating during equipment changeouts or supplemental supply for those times when your cooling loads exceed your current system's capacity. For more information: www.trane-chiller-rental.eu







Trane – by Trane Technologies (NYSE: TT), a global climate innovator – creates comfortable, energy efficient indoor environments through a broad portfolio of heating, ventilating and air conditioning systems and controls, services, parts and supply. For more information, please visit *trane.eu* or *tranetechnologies.com*.