Airfinity[™] XL Models IH / IC Large Packaged Rooftop Units 140 to 270 kW # **Table of Contents** | | 4 | |----------------------------------|--| | | 4 | | Warnings and Cautions | 4 | | Safety Recommendations | 4 | | Reception | 4 | | Loose Parts Inventory | 4 | | Warranty | 4 | | Refrigerant | 4 | | Maintenance Contract | 5 | | Storage | 5 | | Training | 5 | | Unit Model Number Description | 6 | | IC General Data | 8 | | IH General Data | 12 | | Unit Operating Principle | 16 | | Installation | | | Reception of Units | | | Roof Curb Installation | | | Installing the Unit | 18 | | Unit overall view | | | Dimensions/Weights and Clearance | | | | | | | 20 | | Connection of Duct Network | | | Connection of Duct Network | 20 | | Connection of Duct Network | 20 20 21 21 22 23 23 23 23 24 status LED 24 25 27 28 | | Connection of Duct Network | | # **Table of Contents** | Operating Map | 33 | |--|------------| | Cooling mode | 33 | | Heating mode | 33 | | | | | Options | 34 | | Fresh air hood installation | 34 | | Building Pressurization Control | | | Exhaust Fans | | | Hot Water Coil (HWC) | | | Electric Heater | | | Burner module | | | Assembly procedure of fan block | | | Assembly procedure of fair block | | | Controls | 38 | | CH536 + module extension | | | Control Hardware Modules | | | Service Terminal | | | Zone temperature source | | | CO ₂ sensor | | | CO ₂ sensor maintenance | | | Fire thermostat | | | Clogged filter detector | | | Smoke Detector | | | Other accessories available | | | Alarm and Warnings | | | Alami and warnings | | | Customer option module | 40 | | Customer option module | | | Operation with a conventional thermostat | | | Economizer control | | | | | | Operation | 42 | | Test Procedures | | | Gas Burner first start | | | Interface panel | 43 | | interrace paner | | | Maintenance | 44 | | End user Routine Maintenance | | | Service Technician Maintenance | 44 | | Troubleshooting Alarm and Warnings | | | Decommended convice routing fraguencies | 4E | | Recommended service routine frequencies | 45 | | Maintenance routine | 46 | | A 1 1242 | . — | | Additionnal services | 47 | # **General information** #### **Foreword** These instructions are given as a guide to good practice in the installation, start-up, operation, and maintenance by the user, of Trane Airfinity rooftop units. They do not contain full service procedures necessary for the continued successful operation of this equipment. The services of a qualified technician should be employed through the medium of a maintenance contract with a reputable service company. Read this manual thoroughly before unit start-up. Units are assembled, pressure tested, dehydrated, charged and tested in accordance with factory standard before shipment. ### **Warnings and Cautions** Warnings and Cautions appear at appropriate sections throughout this manual. Your personal safety and the proper operation of this machine require that you follow them carefully. The constructor assumes no liability for installations or servicing performed by unqualified personnel. **WARNING!** Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. **CAUTION!** Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices or for equipment or property-damage-only accidents. #### **Safety Recommendations** To avoid death, injury, equipment or property damage, the following recommendations should be observed during maintenance and service visits: - 1. The maximum allowable pressures for system leak testing on low and high pressure side are given in the chapter "Installation". Insure to do note exceed test pressure by using appropriate device. - 2. Disconnect the main power supply before any servicing on the unit. - 3. Service work on the refrigeration system and the electrical system should be carried out only by qualified and experienced personnel. - 4. To avoid any risk, it is recommended to place the unit on an area with restricted access. #### Reception On arrival, inspect the unit before signing the delivery note. Specify any visible damage on the delivery note, and send a registered letter of protest to the last carrier of the goods within 7 days of delivery. Notify the local TRANE sales office at the same time. The delivery note must be clearly signed and countersigned by the driver. Any concealed damage shall be notified by a registered letter of protest to the last carrier of the goods within 7 days of delivery. Notify the local TRANE sales office at the same time. Important notice: No shipping claims will be accepted by TRANE if the above mentioned procedure is not respected. For more information, refer to the general sales conditions of your local TRANE sales office. Note: Unit inspection in France. Delay to send registered letter in case of visible and concealed damage is only 72 hours. #### **Loose Parts Inventory** Check all the accessories and loose parts that are shipped with the unit against the shipping list. Included in these items will be the all kind of sensors, thermostat and electrical diagrams, service literature, which are placed inside the control panel and/or indoor section for shipment. ### Warranty Warranty is based on the general terms and conditions of the manufacturer. The warranty is void if the equipment is repaired or modified without the written approval of the manufacturer, if the operating limits are exceeded or if the control system or the electrical wiring is modified. Damage due to misuse, lack of maintenance or failure to comply with the manufacturer's instructions or recommendations is not covered by the warranty obligation. If the user does not conform to the rules of this manual, it may entail cancellation of warranty and liabilities by the manufacturer. #### Refrigerant Consult the addendum to Manuals for units with refrigerant, for conformity to the Pressure Equipment Directive (PED) 97/23/EC and Machinery Directive 2006/42/EC. ## **General information** #### **Maintenance Contract** It is strongly recommended that you sign a maintenance contract with your local Service Agency. This contract provides regular maintenance of your installation by a specialist in our equipment. Regular maintenance ensures that any malfunction is detected and corrected in good time and minimizes the possibility that serious damage will occur. Finally, regular maintenance ensures the maximum operating life of your equipment. We would remind you that failure to respect these installation and maintenance instructions may result in immediate cancellation of the warranty. #### **Storage** Take precautions to prevent condensate formation inside the unit's electrical components and motors when: - a. The unit is stored before it is installed; or, - b. The unit is set on the roof curb and temporary auxiliary heat is provided in the building. Isolate all side panel service entrances and base pan openings (e.g., conduit holes, Supply Air and Return Air openings, and flue openings) to minimize ambient air from entering the unit until it is ready for start-up. Do not use the unit's heater as temporary heat without completing the start-up procedures detailed under "Unit Start-Up". - Units charged with refrigerant should not be stored where temperatures exceed 68°C. - At least every three months, attach a gauge and manually check the pressure in the refrigerant circuit. - If the refrigerant pressure is below 13 bar at 20°C (or 10 bar at 10°C), call a qualified service organization or Trane Sales Office. The Trane Company will not assume responsibility for equipment damage resulting from accumulation of condensate on the unit electrical components. #### **Training** To assist you in obtaining the best use of it and maintaining it in perfect operating condition over a long period of time, the manufacturer has at your disposal a refrigeration and air conditioning service school. The principal aim of this is to give operators and technicians a better knowledge of the equipment they are using, or that is under their charge. Emphasis is particularly given to the importance of periodic checks on the unit operating parameters as well as on preventive maintenance, which reduces the cost of owning the unit by avoiding serious and costly breakdown. # **Unit Model Number Description** #### **Digit 1 - Manufacturing location** E = Epinal France #### Digit 2 - Unit model I = Airfinity #### Digit 3 - Unit type C = Cooling only H = Reversible Heat pump #### Digit 4-5-6 Unit size 140 = 140 kW 150 = 150 kW 170 = 170 kW 190 = 190 kW 220 = 220 kW #### Digit 7 - Efficiency level S = Standard efficiency #### Digit 8 - Refrigerant A = R410A Factory full refrigerant charge 8 = R410A Factory refrigerant pre charge #### Digit 9 - Unit voltage E = 400 V - 3 Ph - 50 Hz #### Digit 10 - Design Sequence #### Digit 11 - Design Sequence #### Digit 12 - Auxiliary Heat X = Without W = Hot water coil E = Electric heater L = Modulating gas burner,126 kW S = Modulating gas burner,160 kW H = Modulating gas burner,194 kW P = Preheat coil ### Digit 13 - Gas type X = Without 1 = Propane gas 2 = Natural gas (G20) 3 = Natural gas (G25) # Digit 14 - Airflow configuration D = Down Supply & Down Return H = Horizontal Supply & Horizontal Return I = Down Supply & Horizontal Return J = Horizontal Supply & Down Return #### Digit 15 - Available static pressure 1 = Standard External Static Pressure 2 = High External Static Pressure ### Digit 16 - Operating map (cooling mode) A = Standard ambient L = Low ambient #### Digit 17 - Free cooling (Economizer) A = Temperature control B = Enthalpy control X = Without (full recirculation) #### Digit 18 - Heat Recovery Module
X = Without R = Configured for Rotary Wheel B = Configured for Rotary wheel high airflow #### **Digit 19 - Dehumidification** X = Without A = Dehumidification control #### Digit 20 - Outdoor coil treatment B = Without E = With #### Digit 21 - Indoor coil treatment 1 = Without 2 = With #### Digit 22 - Filtration A = G4 (50 mm) filters B = G4 (50 mm) + F7 (100 mm) filters C = G4 (50 mm) + F9 (100 mm) filters D = F5 (50 mm) + F7 (100 mm) filters # Digit 23 - Temperature Zone sensor X = Without A = Duct-mounted zone sensor B = Wall mounted zone sensor #### Digit 24 - Room User Interface X = Without A = Wall-mounted interface THS04 B = Conventional thermostat C = Wall mounted interface PGD1 # Digit 25 - CO₂ sensor X = Without 1 = CO₂ sensor duct-mounted $2 = CO_2^2$ sensor wall-mounted #### Digit 26 - Factory assigned #### **Digit 27 - Airflow Measurement** X = Without A = Airflow measurement and display ### Digit 28 - Dirty filter detection X = Without 1 = With #### Digit 29 - Network protection relay X = Phase reversal protection A = Phase reversal and asymmetry protection # **Unit Model Number Description** # Digit 30 - Literature Language B = Spanish C = German D = English E = French J = Italian P = Polish V = Portuguese #### **Digit 31 - Building Pressurization Control** X = Without 1 = Barometric relief damper 3 = Exhaust fan EC 4 = Configured for return roofcurb (ESP = 250Pa) #### Digit 32 - not used #### **Digit 33 - External Customer Input/Output** X = Without 1 = With #### Digit 34 - Multi-Rooftop Control X = Without C = With Tracer Concierge Comfort T = With Tracer Concierge comfort with Display (Recommended) #### Digit 35 - Communication interface X = Without 1 = ModBus communication interface 2 = LonTalk® communications interface 3 = BACnet (MSTP) ### Digit 36 - Not used #### **Digit 37 - Compressor Starter Type** X = Across the line A = Soft starter #### Digit 38 - Service User Interface X = Without 1 = Service terminal PGD (supplied loose) #### Digit 39 - Fire Thermostat X = Without 1 = With #### Digit 40/41/42/43 - Not used ### Digit 44 - Condenser Guard grill X = Without A = With condenser guard grill ### Digit 45 - Export Packaging X = Without A = With export packaging ### Digit 46 - Special design X = Standard S = Special design | | | IC140 | IC150 | IC170 | IC190 | IC220 | IC250 | IC270 | |--|----------------|-------------|-------------|-------------|---------------------|-------------|-------------|-------------| | Cooling Mode | | | | | | | | | | Net Cooling Capacity (1) | kW | 140.7 | 153.9 | 170.7 | 193.8 | 209.6 | 230.0 | 242.6 | | Total Power Input (1) | kW | 44.7 | 52.7 | 58.4 | 69.2 | 83.2 | 87.1 | 98.4 | | Electric Heater | | | | | | | | | | Number of capacity step | Nb | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Capacity Steps (1) | kW | 37,5/37,5 | 37,5/37,5 | 62,5/37,5 | 62,5/37,5 | 75/37,5 | 75/37,5 | 75/37,5 | | Gas burner: Low Heat | | | | | | | | | | Gas burner type | | PCH132 | Max. burner heat output G20 (Hi) | kW | 130 | 130 | 130 | 130 | 130 | 130 | 130 | | Max. useful heat output G20 Max. efficiency G20 (Hi) | kW
% | 126
96.8 | Min. burner heat output G20 (Hi) | kW | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | | Min. useful heat output G20 | kW | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | | Min. efficiency G20 (Hi) | % | 108.1 | 108.1 | 108.1 | 108.1 | 108.1 | 108.1 | 108.1 | | | | 100.1 | 100.1 | | | | 100.1 | 100.1 | | Modulation | % | | | | 11% to 100% | | | | | Max. condensation (30%Qn) Gas connection ø | l/h | 4.2 | 4.2 | 4.2 | 4.2
/ISO 228/1-G | 4.2 | 4.2 | 4.2 | | Gas burner: Standard Heat | | | | ONIA | 130 220/1-0 | 172 | | | | Gas burner type | | PCH162 | Max. burner heat output G20 (Hi) | kW | 164 | 164 | 164 | 164 | 164 | 164 | 164 | | Max. useful heat output G20 | kW | 160 | 160 | 160 | 160 | 160 | 160 | 160 | | Max. efficiency G20 (Hi) | % | 97.6 | 97.6 | 97.6 | 97.6 | 97.6 | 97.6 | 97.6 | | Min. burner heat output G20 (Hi) | kW | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | | Min. useful heat output G20 | kW | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | | Min. efficiency G20 (Hi) | % | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | | Modulation | % | | | | 11% to 100% | | | | | Max. condensation (30%Qn) | l/h | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | | Gas connection Ø Gas burner: High Heat | _ | _ | | UNI/ | /ISO 228/1-G | 1 1/2" | | | | Gas burner type | | PCH212 | Max. burner heat output G20 (Hi) | kW | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | | Max. useful heat output G20 | kW | 194.3 | 194.3 | 194.3 | 194.3 | 194.3 | 194.3 | 194.3 | | Efficiency G20 (Hi) | % | 97.2 | 97.2 | 97.2 | 97.2 | 97.2 | 97.2 | 97.2 | | , , , | kW | 21 | 21 | 21 | 21 | 21 | 21 | 21 | | Min. burner heat output G20 (Hi) | | | | | | | | | | Min. useful heat output G20 | kW | 22.8 | 22.8 | 22.8 | 22.8 | 22.8 | 22.8 | 22.8 | | Min. efficiency G20 (Hi) | % | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | | Modulation | % | | | | 11% to 100% | 1 | | | | Max. condensation (30%Qn) | l/h | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | | Gas connection Ø | | | | UNI | I/ISO 228/1-G | 1½″ | | | | Hot Water Coil | | | | | | | | | | Type | 1.347 | 154.00 | 162.40 | 160.06 | Fins & Tubes | 104 | 104 | 104 | | Net Heating Capacity Tube Size | kW | 154.80 | 162.48 | 169.06 | 184.80 | 194 | 194 | 194 | | | Inches | 3/8″ | 3/8″ | 3/8″ | 3/8″ | 3/8″ | 3/8″ | 3/8″ | | Face Area | m ² | 1.39 | 1.39 | 1.39 | 1.39 | 1.39 | 1.39 | 1.39 | | Rows/Fin Series | #/FPF | 2 / 144 | 2 / 144 | 2 / 144 | 2 / 144 | 2 / 144 | 2 / 144 | 2 / 144 | | Number of Tubes in the height | | 32 | 32 | 32 | 32 | 32 | 32 | 32 | | Drain Connection outside diameter | mm | DN34 | | | IC140 | IC150 | IC170 | IC190 | IC220 | IC250 | IC270 | |---|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Electrical Data (2) (3) | | | | | | | | | | Main Power Supply | V/Ph/
Hz | 400 / 3 /50 | 400 / 3 /50 | 400 / 3 /50 | 400 / 3 /50 | 400 / 3 /50 | 400 / 3 /50 | 400 / 3 /50 | | Unit Max Amps | A | 118 | 128 | 154 | 170 | 203 | 224 | 239 | | Unit Start Up Amps (without soft starter) | Α | 250 | 296 | 331 | 384 | 417 | 484 | 578 | | Unit Start Up Amps (with soft starter) | Α | 195 | 227 | 255 | 293 | 326 | 372 | 434 | | Maximum Short Circuit rating for 0,3 sec | kA | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | Disconnect swich | | | | | | | | | | Disconnect swich (standard unit) | | Sirco 250A | Sirco 250A | | Sirco 315A | | | Sirco 400A | | Cross section max (standard unit) | mm ² | 150 | 150 | 150 | 240 | 240 | 240 | 240 | | Disconnect swich (unit with electrical heater option) | | Sirco 500A | Sirco 500A | Sirco 500A | Sirco 630A | Sirco 630A | Sirco 630A | Sirco 630A | | Cross section max (unit with electrical heater option) | mm ² | 240 | 240 | 240 | 2x300 | 2x300 | 2x300 | 2x300 | | Disconnect swich (unit with other options that electrical heater) | | Sirco 400A | Sirco 400A | Sirco 400A | Sirco 500A | Sirco 500A | Sirco 500A | Sirco 500A | | Cross section max (unit with electrical heater option) | mm ² | 240 | 240 | 240 | 240 | 240 | 240 | 240 | | Electric data with option (2) (3) | | | | | | | | | | Electric Heater | Α | 108 | 108 | 144 | 144 | 162 | 162 | 162 | | Outdoor fan : Low Ambient | Α | 3.1 | 3.1 | 3.1 | 0.4 | 0.4 | 0.6 | 0.6 | | Indoor fan : Oversized | Α | 11.1 | 11.1 | 9.0 | 14.8 | 0.0 | 0.0 | 0.0 | | Exhaust Fan | Α | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | | Return Roofcurb | Α | 13.2 | 13.2 | 13.2 | 22.0 | 22.0 | 22.0 | 22.0 | | Heat Recovery (not included current for oversized fan) | Α | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | | Heat Recovery - High airflow (not included current for oversized fan) | Α | 21.9 | 21.9 | 21.9 | 21.9 | 21.9 | 21.9 | 21.9 | | Gas burner - modulation - 132 kW | Α | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | Gas burner - modulation - 162 kW | Α | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | Gas burner - modulation - 212 kW | Α | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | Frame | | | | | | | | | | Frame | # | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | Compressor | | | | | | | | | | Number of Circuits | # | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Number of Compressor per Circuits | # | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Туре | | Scroll | Model | | DSH140-4/
DSH140-4 | DSH161-4/
DSH161-4 | DSH184-4/
DSH184-4 | DSH184-4/
DSH240-4 | DSH240-4/
DSH240-4 | DSH240-4/
DSH295-4 | DSH295-4/
DSH295-4 | | Max Amps per Compressor | Α | 22,9 / 22,9 | 25,55 /
25,55 | 29,29 /
29,29 | 29,29 /
38,55 | 38,55 /
38,55 | 38,55 /
46,02 | 46,02 /
46,02 | | Locked Rotor Amps per Compressor | Α | 147 / 147 | 158 / 158 | 197 / 197 | 197 / 215 | 215 / 215 | 215 / 260 | 260 / 260 | | Oil & Refrigerant (6) | | | | | | | | | | Oil quantity per compressors CMP1 / CMP2 (6) | - 1 | 3,3 / 3,3 | 3,3 / 3,3 | 3,6 / 3,6 | 3,6 / 6,7 | 6,7 / 6,7 | 6,7 / 6,7 | 6,7 / 6,7 | | Oil quantity ckt1/ckt2 (6) | I | 6,6 / 6,6 | 6,6 / 6,6 | 7,2 / 7,2 | 10,3 / 10,3 | 13,4 / 13,4 | 13,4 / 13,4 | 13,4 / 13,4 | | Internal Free Volume CMP1 / CMP2 | 1 | 14,3 / 14,3 | 14,3 / 14,3 | 14,6 / 14,6 | 14,6 / 31,0 | 14,6 / 31,0 | 31,0 /
31,0 | 31,0 /
31,0 | | Refrigerant load per circuit (kg
CKT1/ kg CKT2) | kg | 13,5/13,5 | 13,5/13,5 | 16,5/16,5 | 17,5/17,5 | 17,5/17,5 | 19/19 | 19/19 | | Outdoor Coil | | | | | | | | | | Туре | | MCHE | Face Area | m ² | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 4.61 | 4.61 | | Fine per foot | fpf | 23 | 23 | 23 | 23 | 23 | 23 | 23 | | Number of Tubes in the height / MCHE passes | | | | | 155 (127-28) | | | | | | | IC140 | IC150 | IC170 | IC190 | IC220 | IC250 | IC270 | |-----------------------------------|-------------------|-----------------------|-----------------------|-----------------------
-----------------------|-----------------------|-----------------------|-----------------------| | Indoor Coil | | | | | | | | | | Туре | | | | | Fins & Tubes | | | | | Tube Size | Inches | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | | Face Area | m ² | 3.65 | 3.65 | 3.65 | 3.65 | 3.65 | 3.65 | 3.65 | | Rows/Fin Series | #/FPF | 3 / 168 | 3 / 168 | 4 / 168 | 4 / 168 | 4 / 168 | 4 / 168 | 4 / 168 | | Drain Connection outside diameter | mm | 34 | 34 | 34 | 34 | 34 | 34 | 34 | | Indoor Fan | | | | | | | | | | Standard | | | | | | | | | | Туре | | Plug Fans | Model | | K3G500PA
2377 | K3G500PA
2377 | K3G500PB
3377 | K3G500PA
2377 | K3G500PB
3377 | K3G500PB
3377 | K3G500PB
3377 | | Minimum Airflow | m ³ /h | 19200 | 20800 | 22400 | 26400 | 28800 | 33600 | 36800 | | Nominal Airflow | m ³ /h | 24000 | 26000 | 28000 | 33000 | 36000 | 42000 | 44000 | | Maximal Airflow | m ³ /h | 28800 | 31200 | 33600 | 39600 | 40000 | 44000 | 44000 | | Number | # | 3 | 3 | 3 | 4 | 4 | 4 | 4 | | Diameter | mm | 500 | 500 | 500 | 500 | 500 | 500 | 500 | | Drive Type | | EC Motors | Max Motor Power per fan | kW | 3.5 | 3.5 | 5.7 | 3.5 | 5.7 | 5.7 | 5.7 | | Motor Max Amps per fan | Α | 5.3 | 5.3 | 9 | 5.3 | 9 | 9 | 9 | | Max motor RPM | RPM | 1900 | 1900 | 2250 | 1900 | 2250 | 2250 | 2250 | | Available Static Pressure | Pa | 400 | 400 | 400 | 400 | 400 | 400 | 400 | | Oversized | | | | | | | | | | Туре | | Plug Fans | Model | | | | k | (3G500PB337 | 7 | | | | Minimum Airflow | m ³ /h | 19200 | 20800 | 22400 | 26400 | 28800 | 33600 | 36800 | | Nominal Airflow | m ³ /h | 24000 | 26000 | 28000 | 33000 | 36000 | 42000 | 44000 | | Maximal Airflow | m³/h | 28800 | 31200 | 33600 | 39600 | 40000 | 44000 | 44000 | | Number | # | 3 | 3 | 4 | 4 | 4 | 4 | 4 | | Diameter | mm | 500 | 500 | 500 | 500 | 500 | 500 | 500 | | Drive Type | | EC Motors | Max Motor Power per fan | kW | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | | Motor Max Amps per fan | Α | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | Max motor RPM | RPM | 2250 | 2250 | 2250 | 2250 | 2250 | 2250 | 2250 | | Available Static Pressure | Pa | 800 | 800 | 800 | 800 | 800 | 800 | 800 | | Outdoor Fan | | | | | | | | | | Standard Ambient Fan | | | | | | | | | | Туре | | | | Ax | ial / Above / | AC | | | | Model | | A8D800A1
0105 | A8D800A1
0105 | A8D800A1
0105 | A6D800AH
0101 | A6D800AH
0101 | A6D800AH
0101 | A6D800AH
0101 | | Nominal Airflow / ckt | m ³ /h | 26780 | 26780 | 26780 | 33408 | 33408 | 47742 | 47742 | | Number of fan / ckt | # | 2 | 2 | 2 | 2 | 2 | 3 | 3 | | Diameter | mm | 800 | 800 | 800 | 800 | 800 | 800 | 800 | | Motor Power | kW | 0.89 | 0.89 | 0.89 | 1.44 | 1.44 | 1.44 | 1.44 | | Motor Max Amps per fan | Α | 2.22 | 2.22 | 2.22 | 2.9 | 2.9 | 2.9 | 2.9 | | Motor RPM | rpm | 686 | 686 | 686 | 910 | 910 | 910 | 910 | | Low Ambient Fan | | | | | | | | | | Туре | | Axial /
Below / EC | Model | | A3G800AS
3905 | A3G800AS
3906 | A3G800AS
3907 | A3G800AS
3908 | A3G800AS
3909 | A3G800AS
3910 | A3G800AS
3911 | | Nominal Airflow / ckt | m ³ /h | 13390 | 13390 | 13390 | 16703.5 | 16704 | 16704 | 16704 | | Number of fan | # | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Diameter | mm | 800 | 800 | 800 | 800 | 800 | 800 | 800 | | Motor Power | kW | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | | Motor Max Amps per fan | Α | 3.0 | 3.0 | 3.0 | 3 | 3 | 3 | 3 | | Motor RPM | rpm | 686 | 686 | 686 | 910 | 910 | 910 | 910 | | | | IC140 | IC150 | IC170 | IC190 | IC220 | IC250 | IC270 | |---|----------|----------|----------|----------|-------------|----------|----------|----------| | ilter | | | | | | | | | | Filter type prefiltration layer 50mm | | G4 or F5 | Filtration type layer 100mm | | F7 or F9 | Number of Filters / layer | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Filter Size | mm | 500x625 | 500x625 | 500x625 | 500x625 | 500x625 | 500x625 | 500x62 | | Physical Data for Standard Unit (4) | | | | | | | | | | Length (include fresh air hood) | mm | 6224 | 6224 | 6224 | 6224 | 6224 | 7118 | 7118 | | Gas unit extra lenght | mm | 1357 | 1357 | 1357 | 1357 | 1357 | 1357 | 1357 | | Width | mm | 2350 | 2350 | 2350 | 2350 | 2350 | 2350 | 2350 | | Height | mm | 2274 | 2274 | 2274 | 2274 | 2274 | 2274 | 2274 | | Operating Weight (Downflow
Without Auxiliary Heat) | kg | 2237 | 2245 | 2313 | 2438 | 2517 | 2762 | 2767 | | Options Extra Lenght & Extra we | ight (4) | | | | | | | | | Hot Water Coil | kg | 60 | 60 | 60 | 60 | 60 | 60 | 60 | | Electric Heater | kg | 26 | 26 | 26 | 26 | 26 | 26 | 26 | | Gas Burner low Heat | kg | 382 | 382 | 382 | 382 | 382 | 382 | 382 | | Gas Burner Standard Heat | kg | 434 | 434 | 434 | 434 | 434 | 434 | 434 | | Gas Burner High Heat | kg | 474 | 474 | 474 | 474 | 474 | 474 | 474 | | Energy Recovery Module Standard | kg | 646 | 646 | 646 | 646 | 646 | 646 | 646 | | Energy Recovery Module 100% FA | kg | 695 | 695 | 695 | 695 | 695 | 695 | 695 | | Exhaust Fan EC | kg | 127 | 127 | 127 | 127 | 127 | 127 | 127 | | nergy Recovery Module (ERM) | | | | | | | | | | HRW Airfinity XL | | | | | | | | | | Wheel type | | Enthalpy | Enthalpy | Enthalpy | Enthalpy | Enthalpy | Enthalpy | Enthalp | | Wheel Diameter | mm | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | | Wave height | mm | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | Exhaust Fans type | | | | k | (3G500PB337 | 7 | | | | Quantity Exhaust Fans | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Length x Width x Height | mm | | | 17 | 750x1180x15 | 10 | | | | Weight | kg | 663 | 663 | 663 | 663 | 663 | 663 | 663 | | HRW Airfinity XL High Airflow | | | | | | | | | | Wheel type | | Enthalpy | Enthalpy | Enthalpy | Enthalpy | Enthalpy | Enthalpy | Enthalp | | Supplier Ref | | | | SE1 | -HL-WV-1800 |)-CS | | | | Wheel Diameter | mm | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | | Wave height | mm | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | Exhaust Fans type | | | | k | (3G500PB337 | 7 | | | | Quantity Exhaust Fans | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Length x Width x Height | mm | | | 17 | 750x1180x15 | 10 | | | | Weight | kg | 711 | 711 | 711 | 711 | 711 | 711 | 711 | Indicative performances. For detailled performances, consult order write up (OWU). Under 400V/50Hz/3Ph. Electrical & system data are indicative and subject to change without notice. Please refer to unit nameplate data. Indicative data. For details consult lifting and handling instructions in document package shipped with the unit. Value referenced to Cat G20 - for other refer to burner IOM manual. OIL058E or OIL057E are European reference for POE oil and can be mixed in any proportion with OIL00078 or OIL00080 (same oil with US reference on compressor nameplate). | | | IH140 | IH150 | IH170 | IH190 | IH220 | IH250 | IH270 | |---------------------------------------|--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Cooling Mode | | | | | | | | | | Net Cooling Capacity (1) | kW | 139.8 | 153.6 | 162.7 | 187.1 | 201.8 | 221.0 | 236.8 | | Total Power Input (1) | kW | 42.7 | 50.2 | 57.5 | 69.5 | 82.2 | 90.9 | 98.3 | | Heating Mode | | | | | | | | | | Net Heating Capacity (1) | kW | 136.5 | 152.8 | 170.0 | 195.7 | 218.4 | 254.1 | 272.6 | | Power Input (1) | kW | 38.4 | 44.5 | 49.9 | 61.2 | 71.6 | 92.0 | 100.5 | | Electric Heater | | | | | | | | | | Number of capacity step | Nb | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Capacity Steps (1) | kW | 37,5/37,5 | 37,5/37,5 | 62,5/37,5 | 62,5/37,5 | 75/37,5 | 75/37,5 | 75/37,5 | | Gas burner: Low Heat | | | | | | | | | | Gas burner type | | PCH132 | Max. burner heat output
G20 (Hi) | kW | 130 | 130 | 130 | 130 | 130 | 130 | 130 | | Max. useful heat output G20 | kW | 126 | 126 | 126 | 126 | 126 | 126 | 126 | | Max. efficiency G20 (Hi) | % | 96.8 | 96.8 | 96.8 | 96.8 | 96.8 | 96.8 | 96.8 | | Min. burner heat output G20 (Hi) | kW | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | | Min. useful heat output G20 | kW | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | | Min. efficiency G20 (Hi) | % | 108.1 | 108.1 | 108.1 | 108.1 | 108.1 | 108.1 | 108.1 | | Modulation | % | 11% to | | | 100% | 100% | 100% | 100% | 100% | 100% | 100% | | Max. condensation (30%Qn) | l/h | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | | Gas connection ø | | | | UNI | /ISO 228/1-G | 11/2" | | | | Gas burner: Standard Heat | | 5011455 | 5011150 | | | | 5011150 | | | Gas burner type | | PCH162 | Max. burner heat output
G20 (Hi) | kW | 164 | 164 | 164 | 164 | 164 | 164 | 164 | | Max. useful heat output G20 | kW | 160 | 160 | 160 | 160 | 160 | 160 | 160 | | Max. efficiency G20 (Hi) | % | 97.6 | 97.6 | 97.6 | 97.6 | 97.6 | 97.6 | 97.6 | | Min. burner heat output G20 (Hi) | kW | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | 16.4 | | Min. useful heat output G20 | kW | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | 17.8 | | Min. efficiency G20 (Hi) | % | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | | Modulation | % | 11% to | May condensation (200/On) | I/b | 100% | 100%
6.6 | 100% | 100% | 100%
6.6 | 100% | 100% | | Max. condensation (30%Qn) | l/h | 6.6 | 0.0 | 6.6 | 6.6 | | 6.6 | 6.6 | | Gas connection Ø | | | | UNI | /ISO 228/1-G | 1 1/2" | | | | Gas burner: High Heat Gas burner type | | PCH212 | Max. burner heat output | kW | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | | G20 (Hi) | LAM | 104.2 | 104.2 | 104.2 | 104.2 | 104.2 | 194.3 | 104.2 | | Max. useful heat output G20 | kW | 194.3 | 194.3 | 194.3 | 194.3 | 194.3 | | 194.3 | | Efficiency G20 (Hi) | % | 97.2 | 97.2 | 97.2 | 97.2 | 97.2 | 97.2 | 97.2 | | Min. burner heat output G20 (Hi) | kW | 21 | 21 | 21 | 21 | 21 | 21 | 21 | | Min. useful heat output G20 | kW | 22.8 | 22.8 | 22.8 | 22.8 | 22.8 | 22.8 | 22.8 | | Min. efficiency G20 (Hi) | % | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | 108.4 | | Modulation | % | 11% to
100% | Max. condensation (30%Qn) | l/h | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | | Gas connection ø | | | | UNI | /ISO
228/1-G | | | | | Hot Water Coil | | | | | | | | | | Net Heating Capacity | kW | 155 | 162 | 169 | 185 | 194 | 194 | 194 | | Туре | | Fins & Tubes | Fins & Tub | | Tube Size | Inches | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | | Face Area | m2 | 1.39 | 1.39 | 1.39 | 1.39 | 1.39 | 1.39 | 1.39 | | Rows/Fin Series | #/FPF | 2 / 144 | 2 / 144 | 2 / 144 | 2 / 144 | 2 / 144 | 2 / 144 | 2 / 144 | | Number of Tubes in the height | | 32 | 32 | 32 | 32 | 32 | 32 | 32 | | | | IH140 | IH150 | IH170 | IH190 | IH220 | IH250 | IH270 | |---|-------------|-------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------------| | Electrical Data | | | | | | | | | | Main Power Supply | V/Ph/
Hz | | | | 400 / 3 /50 | | | | | Unit Max Amps | Α | 118 | 128 | 154 | 170 | 203 | 224 | 239 | | Unit Start Up Amps (without soft starter) | Α | 250 | 296 | 331 | 384 | 417 | 484 | 578 | | Unit Start Up Amps (with soft starter) | Α | 195 | 227 | 255 | 293 | 326 | 372 | 434 | | Maximum Short Circuit rating for 0,3 sec | kA | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | Disconnect swich | | | | | | | | | | Disconnect swich (standard unit) | | Sirco 250A | Sirco 250A | Sirco 250A | Sirco 315A | Sirco 315A | Sirco 400A | Sirco 400A | | Cross section max (standard unit) | mm² | 150 | 150 | 150 | 240 | 240 | 240 | 240 | | Disconnect swich (unit with electrical heater option) | | Sirco 500A | Sirco 500A | Sirco 500A | Sirco 630A | Sirco 630A | Sirco 630A | Sirco 630A | | Cross section max (unit with electrical heater option) | mm² | 240 | 240 | 240 | 2x300 | 2x300 | 2x300 | 2x300 | | Disconnect swich (unit with other options that electrical heater) | | Sirco 400A | Sirco 400A | Sirco 400A | Sirco 500A | Sirco 500A | Sirco 500A | Sirco 500A | | Cross section max (unit with electrical heater option) | mm² | 240 | 240 | 240 | 240 | 240 | 240 | 240 | | Extra Amps | | | | | | | | | | Electric Heater | Α | 108 | 108 | 144 | 144 | 162 | 162 | 162 | | Outdoor fan : Low Ambient | Α | 3.1 | 3.1 | 3.1 | 0.4 | 0.4 | 0.6 | 0.6 | | Indoor fan : Oversized | Α | 11.1 | 11.1 | 9.0 | 14.8 | 0.0 | 0.0 | 0.0 | | Exhaust Fan | Α | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | | Return Roofcurb | Α | 13.2 | 13.2 | 13.2 | 22.0 | 22.0 | 22.0 | 22.0 | | Heat Recovery (not included current for oversized fan) | Α | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | 12.9 | | Heat Recovery - High airflow
(not included current for
oversized fan) | Α | 21.9 | 21.9 | 21.9 | 21.9 | 21.9 | 21.9 | 21.9 | | Gas burner - modulation -
132kW | Α | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | | Gas burner - modulation -
162kW | Α | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | Gas burner - modulation - 212kW | A | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | | Frame | | | | | | | | | | Frame | # | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Compressor Number of Circuits | # | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Number of Compressor per
Circuits | # | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Type | | Scroll | Model | | DSH140/
DSH140 | DSH161 /
DSH161 | DSH184 /
DSH184 | DSH184 /
DSH240 | DSH240/
DSH240 | DSH240/
DSH295 | DSH295/
DSH295 | | Max Amps per Compressor | Α | 22,9 / 22,9 | 25,55 /
25,55 | 29,29 /
29,29 | 29,29 /
38,55 | 38,55 /
38,55 | 38,55 /
46,02 | 46,02 /
46,02 | | Locked Rotor Amps per
Compressor | Α | 147 / 147 | 158 / 158 | 197 / 197 | 197 / 215 | 215 / 215 | 215 / 260 | 260 / 260 | | Oil & Refrigerant (6) | | | | | | | | | | Oil quantity per compressors
CMP1 / CMP2 | I | 3,3 / 3,3 | 3,3 / 3,3 | 3,6 / 3,6 | 3,6 / 6,7 | 6,7 / 6,7 | 6,7 / 6,7 | 6,7 / 6,7 | | Oil quantity ckt1/ckt2 (6) | I | 6,6 / 6,6 | 6,6 / 6,6 | 7,2 / 7,2 | 10,3 / 10,3 | 13,4 / 13,4 | 13,4 / 13,4 | 13,4 / 13,4 | | Internal Free Volume CMP1
/ CMP2 | I | 14,3 / 14,3 | 14,3 / 14,3 | 14,6 / 14,6 | 14,6 / 31,0 | 14,6 / 31,0 | 31,0 / 31,0 | 31,0 / 31,0 | | Refrigerant load per circuit
(kg CKT1/ kg CKT2) | kg | 20.0 | 20.0 | 20.0 | 21.5 | 21.5 | 26.0 / 26.0 | 26.0 / 26.0 | | | | IH140 | IH150 | IH170 | IH190 | IH220 | IH250 | IH270 | |-----------------------------------|----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Outdoor Coil | | | | | | | | | | Туре | - | | | | Fins & Tubes | | | | | Tube Size | Inches | 5/16" | 5/16" | 5/16" | 5/16" | 5/16" | 5/16" | 5/16" | | Face Area | m2 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 5.52 | 5.52 | | Rows/Fin Series | #/FPF | 2/192 | 2/192 | 3/192 | 3/192 | 3/192 | 3/192 | 3/192 | | Indoor Coil | | | | | | | | | | Туре | | | | | Fins & Tubes | | | | | Tube Size | Inches | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | 3/8" | | Face Area | m2 | 3.65 | 3.65 | 3.65 | 3.65 | 3.65 | 3.65 | 3.65 | | Rows/Fin Series | #/FPF | 4 / 168 | 4 / 168 | 4 / 168 | 4 / 168 | 4 / 168 | 4 / 168 | 4 / 168 | | Drain Connection outside diameter | mm | 34 | 34 | 34 | 34 | 34 | 34 | 34 | | Indoor Fan | | | | | | | | | | Standard | | | | | | | | | | Type | | | | | Plug Fans | | | | | Model | | K3G500PA
2377 | K3G500PA
2377 | K3G500PB
3377 | K3G500PA
2377 | K3G500PB
3377 | K3G500PB
3377 | K3G500PB
3377 | | Minimum Airflow | m3/h | 19200 | 20800 | 22400 | 26400 | 28800 | 33600 | 36800 | | Nominal Airflow | m3/h | 24000 | 26000 | 28000 | 33000 | 36000 | 42000 | 44000 | | Maximal Airflow | m3/h | 28800 | 31200 | 33600 | 39600 | 40000 | 44000 | 44000 | | Number | # | 3 | 3 | 3 | 4 | 4 | 4 | 4 | | Diameter | mm | 500 | 500 | 500 | 500 | 500 | 500 | 500 | | Drive Type | | EC Motors | Max Motor Power per fan | kW | 3.5 | 3.5 | 5.7 | 3.5 | 5.7 | 5.7 | 5.7 | | Motor Max Amps per fan | Α | 5.3 | 5.3 | 9 | 5.3 | 9 | 9 | 9 | | Max motor RPM | RPM | 1900 | 1900 | 2250 | 1900 | 2250 | 2250 | 2250 | | Available Static Pressure | Pa | 400 | 400 | 400 | 400 | 400 | 400 | 400 | | Oversized | | | | | | | | | | Туре | | Plug Fans | Model | | | | l | K3G500PB337 | 7 | | | | Minimum Airflow | m3/h | 19200 | 20800 | 22400 | 26400 | 28800 | 33600 | 36800 | | Nominal Airflow | m3/h | 24000 | 26000 | 28000 | 33000 | 36000 | 42000 | 44000 | | Maximal Airflow | m3/h | 28800 | 31200 | 33600 | 39600 | 40000 | 44000 | 44000 | | Number | # | 3 | 3 | 4 | 4 | 4 | 4 | 4 | | Diameter | mm | 500 | 500 | 500 | 500 | 500 | 500 | 500 | | Drive Type | | EC Motors | Max Motor Power per fan | kW | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | | Motor Max Amps per fan | Α | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | Max motor RPM | RPM | 2250 | 2250 | 2250 | 2250 | 2250 | 2250 | 2250 | | Available Static Pressure | Pa | 800 | 800 | 800 | 800 | 800 | 800 | 800 | | Outdoor Fan | | | | | | | | | | Standard Ambient Fan | | | | 0 | / Al / | • | | | | Type | | A 9 D 9 O O A 1 | A8D800A1 | A8D800A1 | xial / Above / A | A6D800AH | A 6 D 8 O O A H | A 6 D 9 O O A H | | Model | | A8D800A1
0105 | 0105 | 0105 | A6D800AH
0101 | 0101 | A6D800AH
0101 | A6D800AH
0101 | | Nominal Airflow / ckt | m3/h | 26780 | 26780 | 26780 | 33408 | 33408 | 47742 | 47742 | | Number of fan / ckt | # | 2 | 2 | 2 | 2 | 2 | 3 | 3 | | Diameter | mm | 800 | 800 | 800 | 800 | 800 | 800 | 800 | | Motor Power | kW | 0.89 | 0.89 | 0.89 | 1.44 | 1.44 | 1.44 | 1.44 | | Motor Max Amps per fan | Α | 2.22 | 2.22 | 2.22 | 2.9 | 2.9 | 2.9 | 2.9 | | Motor RPM | rpm | 686 | 686 | 686 | 910 | 910 | 910 | 910 | | Low Ambient fan | | | | | | | | | | Туре | | | | A | xial / Below / I | EC | | | | Model | | | | , | A3G800AS390 | 5 | | | | Nominal Airflow / ckt | m3/h | 13390 | 13390 | 13390 | 16703.5 | 16704 | 16704 | 16704 | | Number of fan | # | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 800 | 800 | 800 | 800 | 800 | 800 | 800 | | Diameter | mm | | | | | | | | | Diameter
Motor Power | mm
kW | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | 1.95 | | | | | 1.95
3.0 | 1.95
3.0 | 1.95
3 | 1.95
3 | 1.95
3 | 1.95
3 | | | | IH140 | IH150 | IH170 | IH190 | IH220 | IH250 | IH270 | |--|---------|----------|----------|----------|--------------|----------|----------|----------| | Filter | | | | | | | | | | Filter type prefiltration layer 50mm | | G4 or F5 | Filtration type layer 100mm | | F7 or F9 | Number of Filters / layer | | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Filter Size | mm | 500x625 | Physical Data for Standard Un | it | | | | | | | | | Length (include fresh air hood) | mm | 6224 | 6224 | 6224 | 6224 | 6224 | 7118 | 7118 | | Gas unit extra lenght | mm | 1357 | 1357 | 1357 | 1357 | 1357 | 1357 | 1357 | | Width | mm | 2350 | 2350 | 2350 | 2350 | 2350 | 2350 | 2350 | | Height | mm | 2274 | 2274 | 2274 | 2274 | 2274 | 2274 | 2274 | | Operating Weight (Downflow Without Auxiliary Heat) | kg | 2397 | 2405 | 2463 | 2574 | 2646 | 2841 | 2844 | | Options Extra Lenght & Ex | tra wei | ght | | | | | | | | Hot Water Coil | kg | 60 | 60 | 60 | 60 | 60 | 60 | 60 | | Electric Heater | kg | 26 | 26 | 26 | 26 | 26 | 26 | 26 | | Gas Burner low Heat | kg | 382 | 382 | 382 | 382 | 382 | 382 | 382 | | Gas Burner Standard Heat | kg | 434 | 434 | 434 | 434 | 434 | 434 | 434 | | Gas Burner High Heat | kg | 474 | 474 | 474 | 474 | 474 | 474 | 474 | | Energy Recovery Module
Standard | kg | 646 | 646 | 646 | 646 | 646 | 646 | 646 | | Energy Recovery Module
100% FA | kg | 695 | 695 | 695 | 695 | 695 | 695 | 695 | | Exhaust Fan | kg | 127 | 127 | 127 | 127 | 127 | 127 | 127 | | nergy Recovery Module (ERM | 1) | | | | | | | | | HRW Airfinity XL | | | | | | | | | | Wheel type | | Enthalpy | Wheel Diameter | mm | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | | Wave height | mm | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | Exhaust Fans type | | | | 1 | K3G500PB337 | 7 | | | | Quantity Exhaust Fans | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Length x Width x Height | mm | | | 1 | 750x1180x151 | .0 | | | | Weight | kg | 663 | 663 | 663 | 663 | 663 | 663 | 663 | | HRW Airfinity XL High Airf | low | | | | | | | | | Wheel
type | | Enthalpy | Supplier Ref | | | | SE1-HL | -WV-1800-CS | | | | | Wheel Diameter | mm | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | | Wave height | mm | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | | Exhaust Fans type | | | | | K3G500PB337 | 7 | | | | Quantity Exhaust Fans | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Length x Width x Height | mm | | | 1 | 750x1180x151 | .0 | | | | Weight | kg | 711 | 711 | 711 | 711 | 711 | 711 | 711 | Indicative performances. For detailled performances, consult order write up (OWU). Under 400V/50Hz/3Ph. Electrical & system data are indicative and subject to change without notice. Please refer to unit nameplate data. Indicative data. For details consult lifting and handling instructions in document package shipped with the unit. Value referenced to Cat G20 - for other refer to burner IOM manual. OIL058E or OIL057E are European reference for POE oil and can be mixed in any proportion with OIL00078 or OIL00080 (same oil with US reference on compressor nameplate). # **Unit Operating Principle** # **UNIT SYNOPTIC** Figure 1 General information: The installation must conform to all local standards and regulations. ## **Reception of Units** #### **Unit Handling** The unit is supplied on wooden blocks. It is recommended to check the machine's condition upon reception. There are two ways to handle the unit: - Handle the machine using a forklift, in accordance with applicable safety regulations. Handling of the unit is prohibited unless forks are longer than the length of the unit. - 2) Use a lifting beam correctly adjusted to fit the unit. The units are supplied on the truck but are not unloaded. A lifting lug is provided on each corner of the unit's base to facilitate handling. 4 shackles and 4 slings are required. Use a lifting beam to prevent the cables pressing too hard on top of the unit during lifting. **Important:** For unit to fit on the roof curb the wooden blocks must be removed. #### Lifting and moving Instructions It is recommended to use the special built-in rigging points shown in the diagram and the following instructions: - 1 Detailed lifting instructions will be shared along with unit documentation package. - 2 Use the four rigging points which are built into the unit. - 3 Slings and a spreader bar are to be provided by the rigger. - 4 The minimum lifting capacity of each sling (with an angle of 30° max) as the spreader bar must be equal or higher than tabulated unit shipping weight. - 5 Caution : This unit must be lifted and handled with care. Avoid shocks while handing. Figure 2 - Schematic of Lifting drawing #### **Roof Curb Installation** Roof curb option is not developed by Trane. However it is possible to use specific roof curb developed case by case for down flow units. The roof curb should support the unit and should ensure water tightness. #### Instructions for the roofcurb assembly and installation In order to insure watertighness of the roofcurb assembly, it is important to respect the schematics below and to consult the booklet for roofcurb assembly shipped with the roofcurb module. Be sure that gasket is positioned on the roofcurb and without damage before unit positioning. To avoid any property damage or personal injury, it is the installer's responsibility to make sure that the installation will not impair the function of this curb, or the unit to be installed; and that the roofcurb and unit must be completely sealed, preventing any water or air leakage damage. Figure 3 - Waterproofing - 1. Roofcurb - 2. Roof membrane - 3. Seal - 4. Rooftop #### Installing the Unit The structure accommodating the unit(s) must be designed to support the equipment in operation, as a minimum. Refer to submittals drawings supplied with the unit for dimensions, weight and clearance requirement around unit. #### **Unit support** Install the unit on a flat foundation strong enough to support unit loading and level (within 5 mm across the length and width of the unit). If the unit is to be roof mounted check the building codes for weight distribution requirements #### Location and clearances Choose a location that will enable air to circulate freely in the condenser coil and allow air to be discharged above the fans. The clearance distances for air circulation and maintenance are indicated in the submittals drawings. ### Placing and rigging The rooftop units are designed to be installed outdoor and must be positioned horizontally (vertical air discharge off the condenser). #### Slab mount For ground level installation, the unit base should be adequately supported and hold the unit near level. In areas where snowfall is common, the unit must be elevated enough to ensure that the bottom of the outdoor coil is above the height of the expected snow accumulation. Where severely cold temperatures are a consideration, elevation of the unit is again recommended to ensure that defrost water does not create an ice build up that will interfere with unit operation. In addition, runoff water from roofs, etc... must not be allowed to fall on the outdoor coil; any blockage of airflow through the coil can be detrimental to unit operation and reliability. The manufacturer suggests that the bottom of the outdoor coil be raised 30cm above grade or roof to prevent possible ice build-up problems. The unit frame structure is not designed to be supported by four points (mounting on spring isolators for instance). The unit must therefore rest on its whole base. ### Unit overall view Figure 4 - Example of outdoor section Figure 5 - Indoor section #### **Dimensions/Weights and Clearance** This information is supplied in the document package shipped with the unit. #### **Connection of Duct Network** Supply and return openings have curb flanges provided for easy duct installation. It is recommended to insulate the circumference of the curb after the unit is mounted to prevent condensation. **CAUTION!** All ductwork must be run and attached to the curb flanges before the unit is set into place. #### **Guidelines for ductwork construction** - Connections to the unit should be made with 7.5 cm canvas connectors to minimize noise and vibration transmission. - Elbows with turning vanes or splitters recommended to minimize air noise and resistance. - The first elbow in the ductwork leaving the unit should be no closer than 60 cm from the unit, to minimize noise and resistance. #### Attaching horizontal ductwork to unit - All conditioned air ductwork should be insulated to minimize heating and cooling duct losses. Use a minimum of 5 cm of insulation with a vapour barrier. The outside ductwork must be waterproof between the unit and the building. - When attaching ductwork to a horizontal unit, provide a flexible watertight connection to prevent noise transmission from the unit to the duct. The flexible connection must be indoors and made out of heavy canvas. **Note:** Do not draw the canvas taut between the solid ducts. ## **Condensate Drain Piping** Each unit is equipped with a 1 1/4" female drainage connector. A P trap is supplied and must be connected to the drainage as shown in Figure 5. Slope the drainage pipe down at least 1% to ensure an adequate condensate flow. Check all the condensate drainage pipe fittings comply with the applicable construction regulations and waste disposal standards. Figure 6 - Supplied trap installation Figure 7 - Drain piping location - 1: Removable unit drain pan - 2: Gas burner drain pan #### Filter installation Access to the filter cells is done via the filter access door. Filter support can be slided laterally. Each unit is shipped with this available filter combination: G4 G4+F7 G4+F9 F5+F7 F7+F9 combination is not allowed The number and the size of the filter cells are determined by the frame of the unit. Each unit has 2 rails of filter. Per rail Frame 1: 6 filters of 500x625 Frame 2: 8 filters of 500x625 Frame 3: 12 filters of 500x500 There is 4 different types of filters which are place on rails of 50 mm or 100 mm upstream of the indoor coil. Figure 8 - Filter Pressure Drop Recommended clog filter switch delta pressure value is 200 Pa with a maximum of 250 Pa according to available static pressure. Note: See table to have the specific airflow range for different unit sizes. # Supply plug fan airflow adjustment - 1) Order write up (OWU) indicate design airflow, supply and design air pressure drop. - 2) Verify on site supply fan airflow. It should match OWU design airflow. - 3) If on site airflow is different from OWU design airflow the actual supply and design air pressure drop should be different from design values, Trane service technician should be mandated to perform air flow adjustment and optimization. # Supply fan Airflow measurement option The airflow measurement option when selected is associated with an air differential pressure sensor which measures the pressure difference before the inlet nozzle and inside the inlet nozzle. Unit air flow can be calculated on the basis of the differential pressure (difference in pressure of the static pressures) in keeping with the following equation: $$Ov = k. \sqrt{\Delta P}. N$$ Qv in $[m^3/h]$ and Δp in [Pa] N - number of fans k - takes into account the specific nozzle characteristics. Connection on the unit side is acomplished via a premounted T tube connector. This tube connector is suited for pneumatic hoses with an internal diameter of 4 mm. #### k factors: | Fan diameter | 400 | 450 | 500 | |--------------|-----|-----|-----| | k-factor | 188 | 240 | 281 | According to the option chosen, airflow or fan RPM can be read directly on the optional display or should be determined by connecting a pressure drop meter to the pre mounted T connector. Setup is -20%/+30% variation versus factory setting (190m³h-1/kW @ 250 Pa). # Gas Pipework Installation Installation of gas piping (to be performed by the contractor) The installation rules for public buildings shall be followed: refer to the brochure in the "Journal Officiel"
number 1477-1 (France only). The gas supply piping and the gas stop valve shall be dimensioned to guarantee the gas supply pressure at the unit's inlet when it is functioning at full capacity. It is recommended to install one expansion valve as close as possible to each installed unit. The piping must be self-supporting before the final branch connection to the unit. Allow for a dust trap (filter) upstream of the connection to the unit. Search for gas pipe leaks using tensio-active product such as "Teepol" or "1000 bulles" or another equivalent method. Soapy water must not be used. #### **WARNING!** Never use a flame to search for leaks. The required gas pressures at the unit's inlet connection are specified in table «Marking Category of gas section in different countries» #### **CAUTION!** The piping must not exert any stress on the branch connection to the burner. The heating system must be isolated by the gas stop valve on the gas supply piping during the pressure tests, as soon as the pressure exceeds 0.060 bar (60 mbar). If pressure greater than 0.060 bar is applied to the gas valve inlet the unit may be damaged. In this case it is mandatory to add a pressure reducer. Connect condensation pipe for modulating burner. 2 stages burner is not supposed produce condensate and the small amount of condensate possibly produced in particular working conditions will in case evaporate Figure 9 - Typical Gas Supply pipework #### KEY - 1 Main burner gas solenoid valve - 2 Pilot burner gas solenoid valve - 3 Pressure stabiliser - 4 Safety gas solenoid valve - 5 Gas filter (small section) - 6 Anti-vibration joint - 7 Gas filter (large section) - 8 Gas valve Gas connection Ø : male UNI/ISO 228/1 G3/4" tightening torque $150Nm \rightarrow all range$ #### Smoke outlet features Unit is shipped with an outlet adaptor for connection to exhaust pipe. If there is no exhaust pipe used, a terminal feature located on the accessories should be installed. Note: Exhaust pipe material has to be chosen carefully to avoid corrosion. Figure 10 - Exhaust gas terminal installation PCH 132 PCH 162 - PCH 212 #### **General Electrical Recommendations** #### **Electrical Parts** When reviewing this manual keep in mind. - All field-installed wiring must be in accordance with local regulations, CE directives and guidelines. Be sure to satisfy proper equipment grounding requirements according CE. - The following standardized values Maximum Amps -Short Circuit Amps - Starting Amps are displayed on unit nameplate. - All field-installed wiring must be checked for proper terminations, and for possible shorts or grounds. **Note**: always refer to wiring diagrams shipped with unit or unit submittal for specific electrical schematic and connection information. #### **WARNING Hazardous Voltage!** Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/ tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury. #### Important! Do not allow conduit to interfere with other components, structural members or equipment. Control voltage (230 V) wiring in conduit must be separate from conduit carrying low voltage (<30V) wiring. To prevent control malfunctions, do not run low voltage wiring (<30V) in conduit with conductors carrying more than 30 volts. #### **CAUTION!** Inverters are equipped with integrated filters. They are not compatible with insulated neutral load earthing arrangements. #### WARNING! High voltage! Any contact with electric components, even after the unit has been switched off, can cause serious injury or death. Wait at least 5 minutes after switching off the unit, until the current dissipates. #### **Installer-Supplied Components** Customer wiring interface connections are shown in the electrical schematics and connection diagrams that are shipped with the unit. The installer must provide the following components if not ordered with the unit: - Power supply wiring (in conduit) for all field-wired connections. - All control (interconnecting) wiring (in conduit) for field supplied devices. - · Circuit breakers. #### Grounding Be sure to ground the unit and differential protection should be suited for industrial machinery with current leak which can be higher than 300 mA (several motors and frequency drives). #### **CAUTION!** To avoid corrosion, overheating or general damage, at terminal connections of power supply wiring, unit is designed for copper mono-conductors only. In case of multiconductor cable, an intermediate connection box must be added. For cable with alternative material, bi-material connecting devices are mandatory. Cable routing inside control panel should be made case by case by installer. #### **WARNING Ground Wire!** All field-installed wiring must be completed by qualified personnel. All field-installed wiring must comply with local codes and regulations. Failure to follow this instruction could result in death or serious injury. All power supply wiring must be sized and selected accordingly by the project engineer in accordance with local codes and regulations. #### WARNING! The Warning Label which is displayed on the equipment and shown on wiring diagrams and schematics. Strict adherence to these warnings must be observed. Failure to do so may result in personal injury or death. #### **CAUTION!** Units must not be linked to the neutral wiring of the installation. Units are compatible with the following neutral operating conditions: | TNS | IT | TNC | TT | |------------|---------|---------|-----------| | Standard** | Special | Special | Standard* | ^{*} Differential protection should be suited for industrial machinery with current leak which can be higher than 300 mA (several motors and frequency drives). Neutral wire not distributed. #### **Electrical Connections** The electric panel is located on the length of the indoor section behind the plug fan section. The unit is designed to run with 400V (+/-10%) - 50 Hz (+/-1%) - 3 ph. **CAUTION!** After completion of wiring, check all electrical connections, and ensure all connections are tight. Replace and secure all electrical box covers and access doors before leaving unit or connecting power to circuit supplying unit. #### Scroll compressors Proper phasing of the electrical power wiring is critical for proper operation and reliability of the scroll compressor and fans. Proper rotation of the scroll compressor must be established before the unit is started. This is accomplished by confirming that the electrical phase sequence of the power supply is correct. The motor is internally connected for clockwise rotation with the inlet power supply phased A, B, C. The direction of rotation may be reversed by interchanging any two of the line wires. It is this possible interchange of wiring that makes a phase sequence indicator necessary if the operator is to quickly determine the phase rotation of the compressor motor. The "ABC" indicator on the face of the phase indicator will glow if phase is ABC for terminals L1, L2, and L3. # Blink Code for motor protector with status LED The blink code facilitate trouble-shooting on site. It provides Information on the actual status of the motor protector. #### **Functional Description:** A red/green twin LED mounted on the printed circuit board generates the blink code, which is then made visible on the front housing of the module via an optic guide. A solid green LED denotes a fault-free condition; a blinking red LED indicates an identifiable fault condition. #### Blink Code: The blink code consists of different on / off times of the red Led. The cycle is repeated continuously | Fault | LED on | LED off | LED on | LED off | |------------------------|---------|---------|---------|---------| | PTC overheat | approx. | approx. | approx. | approx. | | | 40 ms | 460 ms | 40 ms | 460 ms | | PTC reset delay active | approx. | approx. | approx. | approx. | | | 80 ms | 920 ms | 80 ms | 920 ms | | phase loss | approx. | approx. | approx. | approx. | | | 500 ms | 500 ms | 500 ms | 500 ms | | wrong phase sequence | approx. | approx. | approx. | approx. | | | 120 ms | 120 ms | 120 ms | 400 ms | ^{**} Neutral wire not distributed # **Energy Recovery Module Installation** Energy Recovery Module is a module that transfers heat (cool and warm) from exhaust air to fresh air. It is an add-on module that includes heat exchanger (rotary wheel), exhaust fan, filter and dampers. The module is shipped separately and connected to the rooftop on job site. The module is fully controlled and powered by the rooftop itself. Free cooling mode is still available. Assembly of module should be done according to the instructions below and with the help of submittal and electrical drawing shipped with the unit. #### **Horizontal Flow** **HRW Module** Step 1: HRW module Step 2: Remove 2 supports Step 3: Remove 2 Alkilux plates and set 5 screws M8 and 2 corner elements Step 4: Remove 2 wood parts Gasket is located on all the faces in junction with the main unit. # **Down Flow** **HRW Module** Location of connect screws and corner elements Step 1: HRM module Step 2: Remove 2 supports Step 3: Remove 2 Alkilux plates and set of 5 screws M8 and 2 corner elements Step 4: Remove 2 wood parts Gasket is located on all the faces in junction with the main unit. # **HRW MODULE PREPARATION** # **Horizontal flow** Step 1: positioning of 2 HRW supports Step 2: fixing of 2 HRW supports (4 screws and washers) 3 3 3 **Down flow** Step 1: positioning of 2 HRW supports Step 2: fixing of 2 HRW supports 5 4 screws and washers) # **HRW MODULE INSTALLATION** For details refer to handling drawing supplied with unit. # **Horizontal flow** Step 1: Locate HRW module to 90 mm of the unit Step 2 : Lay down on the 2 supports Step 3 : Make a close contact to the unit to crush the seal. # **Down flow** Step 1: Locate HRW module to 90 mm of the unit Step 2: Lay down on
the 2 supports Step 3: Make a close contact to the unit to crush the seal. Detail A 5 screw M8 Detail B ### FRESH AIR HOOD INSTALLATION Fresh air hood assembly steps # **Horizontal flow** Step 1: Remove sheet metal hood set. Step 2: Position side flange with corner on the outside Step 3: position the cover hood Step 4: Repeat the steps 2 and 3 for the second hood Step 5: Repeat the steps 2 and 3 for the third hood Note: Fresh air hood is installed by plant for Horizontal flow unit. # **Down flow** Step 1: Remove sheet metal hood set. Step 2: Position side flange with corner on the outside Step 3: position the cover hood Note: Fresh air hood is installed on job site for down flow unit. # **Heat Recovery Module** # **Horizontal flow** # **Down flow** Figure 11 - Unit gas with HRW horizontal flow and down flow Figure 12 - Unit with HRW horizontal flow and down flow # **Operating Map** Minimum Outdoor Temperature = -15 °C Maximum Indoor Coil Mixed Temperature = 35°C Minimum Indoor Coil Mixed Temperature = 15 °C ### **Heating mode** Minimum Outdoor Temperature = -15°C Maximum Indoor Coil Mixed Temperature = 26°C Minimum indoor Coil Mixed Temperature = 5°C # **Options** Free cooling economizer unit is supplied with economizer and fresh air hood as a standard feature. Fresh air percentage can vary from 0 to 100%. An economizer consists of: - A motorized damper with separate fresh air and return air sections. - A fresh air hood with a grill delivered folded in the unit. - · All necessary sensors for free cooling operation. The mechanical opening of the damper is managed by the actuator which is adjusted by Trane controller. Damper is activated in free cooling mode and may be further controlled by temperature control with return and outdoor air sensors or by enthalpy control with addition to temperature sensor of return and outdoor humidity sensor. # Fresh air hood installation Figure 13 - Fresh air hood assembly steps #### **Horizontal Flow** Step 1: Remove sheet metal hood Step 2: Position the flange with corner on the outside Step 3: position the cover hood Step 4: Repeat the steps 2 and 3 Step 5: Repeat the steps 2 and 3 # **Down Flow** Step 1: Remove sheet metal hood Step 2: Position side flange with corner on the outside ## **Building Pressurization Control** #### **Barometric Relief** The barometric relief allows to minimize overpressure in the building caused by the introduction of fresh air. This option is typically installed when fresh air intake is below 25% of the nominal air flow and when the return air pressure drop is below 25Pa. Barometric damper is integrated as standard into economizer option on downflow and not compatible with heat recovery module unit only. When the pressure of the building increase, the dampers open and relieve air to the outside. If the return air duct pressure drop is higher than the building overpressure, the dampers will not open. If the return air duct pressure drop is lower than the building overpressure, the dampers will open and relieve air outside of the building. Figure 14 - Barometric relief # **Options** #### **Exhaust Fans** The exhaust plug fans EC are used to minimize the overpressure in the building caused by the introduction of fresh air. This option is typically used when the fresh air intake needed is between 40 to 50% of the nominal air flow or when the return air duct pressure drop is higher than 25Pa (<70Pa or 150Pa according to option selected). This option includes hoods, gravity dampers and axial fans. Optional service Terminal allow to adjust exhaust fans EC start and stop value according to fresh air damper position. When the supply air fan is ON, the exhaust fans EC turn on whenever the position of the fresh air dampers meet or exceed the exhaust fan EC set point. (If the potentiometer is set at 40%, the exhaust fans EC will start when the fresh air dampers will meet or exceed 40% opening). #### Operation exhausted. - When the exhaust fans EC are OFF: - The barometric dampers open when the air pressure inside the building increases. As the building pressure increases, the pressure in the unit return section also increases, opening the - dampers and relieving the air. If return air pressure drop>building overpressure - If return air pressure drop
 building overpressure (ΔP
 Patm) \rightarrow barometric damper opens and a maximum of 25% of the nominal airflow can be $(\Delta P > Pb - Patm) \rightarrow barometric damper is closed.$ - When the exhaust fans EC turn ON: - Around 50% of airflow can be exhausted, depending on the pressure drop in the return air duct. - The two fans work always together, on stage ON-OFF. - Each fan has two speeds, which makes 2 configurable speeds by changing the wiring on site. - The exhaust fan EC is started when fresh air dampers meet or exceed a preset percentage of fresh air. Configured for Return roofcurb (ESP=250 PA) Figure 15 - Exhaust fan # **Options** #### **Hot Water Coil (HWC)** Figure 16 - Hot water coil location in the unit (Downflow and horizontal supply air flow HWC applies when additional heat is required. Hot water comes from external boiler or other device. HWC provides heating with a coil located after indoor coil and offer full modulation heating control through the use of a 3 ways valve. Control is based on mixed air temperature and zone temperature. Factory setting is given to heat pump operation. Hot water is called in addition. Priority can be switched on Antifreeze opens the 3 ways valve when the coil temperature is closed to the freezing point (2°C). In antifreeze mode, unit operating, indoor fan is stopped and the unit locked out in manual reset. Fresh air damper is closed and the modulating valve opens. The freeze protection works with manual reset. Important notice: it is important that the pump circulating hot water is permanently working to avoid water to freeze in the coil. Otherwise, in order to prevent water from freezing in the coil period, it is recommended to use ethylene glycol. The service of a used can cause scaling deposits, erosion or corrosion. Insulation and proceed to heater wire installation on all the water piping likely to be exposed to freezing temperatures in order to avoid freeze up the coil and heat losses. The water distribution network must be fitted with vents in places where air is likely to be trapped. Figure 17 - Glycol percentage recommendation curve - 1 = Critical risks of freezing2 = Efficient freeze protection - 3 = Ethylene glycol 4 = Propylene glycol % = Glycol percentage (mass concentration) °C = Glycol or water temperature Water connection dimensions and characteristics Figure 18 - Hot water coil view and connections The hot water coil is factory mounted and placed in the discharge section. Two holes are provided to connect the hot water coil. The tubes for entering and leaving water are equipped with a threaded female connection. Figure 19 - Hot Water Coil Pressure Drop ## **Options** #### **Electric Heater** Electric heater are fitted on the supply fan discharge. Heaters have two heating stages and provided with two types of overheat thermostats: - Automatic reset thermostats which stop the electric heater when air temperature rises to 65°C. - The manual reset thermostat which stops the unit when the air temperature rises to 128°C. Figure 20 - Electric Heater Pressure Drop Figure 21 - Electric heaters installed on the unit (Downflow and horizontal supply air flow) ## **Burner module** PCH: premix burner with a condensing heat exchanger Figure 22 - Modulating (PCH) gas valves and variable speed combustion blower Figure 23 - Gas heat air pressure drop ## Assembly procedure of fan block All ERC specific electrical components are located in the electrical box. Electrical connections of exhaust fan must be performed on site. # **Controls** ## CH536 + module extension #### **Control Hardware Modules** The main CH536 module allows the control of the heat pump, the indoor EC fan and the outdoor fan. 3 extension module can be used: - 1 module for auxiliary heat, economizer enthalpy, exhaust fan and for ERP. - 1 module for heat recovery. - 1 extension module to manage customer options. Figure 24 - CH536 main module #### **Service Terminal** The service terminal is an option to the customer, easily plugged to unit through cable. The controller is composed of six different buttons and a graphical display. This view of plug-and-play service and the controller allows personal service to read and modify some parameters of the device as setpoints (cooling and heating), airflow, alarm and warning display. It includes scrolling menus and explanation of full text. Figure 26 - Optional display ## **Control Hardware Bus** This diagram is for information. For details refer to wiring diagram shipped with the unit. Figure 25 - Control Hardware Bus ## **Controls** ## Zone temperature source The zone temperature source are summarized in the table below by hierarchy order. | Source | Condition | |----------------------------|--| | 1. BAS | BAS command enabled & Value in validity range [-10°C; +50°C] | | 2. Zone Temp Sensor | Ad-hoc Config enabled & Value in validity range [-10°C; +50°C] | | 3. Zone Temp THS04 | THS04 installed & Ad-hoc Config enabled & Value in validity range [-10°C; +50°C] | | 4. Conventional Thermostat | Ad-hoc config enabled | | 4. Return Air Temp | Value in validity range [-10°C; +50°C] | ## CO₂ sensor CO₂ sensor can be either in air return duct or wall mounted. It maintains a CO₂ concentration below a preset value to ensure acceptable comfort. Controls the opening of the fresh air damper of the economizer. The outside air damper will modulate in order to maintain the CO₂ concentration below the setpoint. To open damper it should combine the amount of desired fresh air and the free cooling mode to modulate from 0 to 100% maximum opening of the dampers. It is possible
to preset a minimum opening during commissioning. The CO₂ sensor is set for 0-10V analog outputs and provide sensing of carbon dioxide over a range of 0-2000 ppm. The sensor requires a 24 VDC power supply. Consult wiring diagram supplied with the unit for details. The resolution of analog outputs reaches 10 ppm CO₂. The information is then sent to the controller CH536 to control the opening position of the fresh air damper. Avoid locating the duct sensor on surfaces with an uncooled, unheated area behind them or in "dead" spot behind doors or in corners. The ${\rm CO_2}$ wall mounted sensor should be placed on a flat surface, 1.4 m from the floor in an area of the room where there is free air circulation. ## CO₂ sensor maintenance This CO₂ sensor has excellent stability and requires no maintenance. In most environments the recommended calibration interval is five years. A trained service technician can use a portable CO₂ meter to certify sensor calibration. If, when checking the sensor, the reading differs too much from the reference value, the sensor can be recalibrated in the field. A calibration kit, software, and calibration gases are required. If certified accuracy is required, the sensor must be calibrated against accurate and traceable calibration gases in a laboratory. Consult Trane BAS for further details. ## Fire thermostat U12 is the dedicated I/O. Optional fire thermostat should be configured if present according to wiring diagram. ## Clogged filter detector This device is mounted in the filter section. The sensor measures the difference in pressure before and after the filter section. The information is sent to the optional service terminal or the BMS. #### Smoke Detector **Installation**: This device is used to detect smoke in the air stream. Detector is delivered by trane and must be installed by the customer to comply with local regulation. The detector must be connected to the central panel according the wiring diagram. **Operation:** When smoke is detected, it shuts off the unit, and an alarm is activated in the controller to inform the user through the local or remote control. #### Other accessories available - DTS : duct mounted wired temperature sensor The duct mounted sensor - mainly for unit with auxiliary heat - must be installed away of any duct singularities and generally at 2 m of any duct elbow or duct inside element both upstream and downstream. - TZS01: wall mounted wired temperature sensor - THS04: wall mounted thermostat Refer to separate documentation for more information. ### **Alarm and Warnings** Alarms stop the unit or reduce the heating/cooling capacity. Alarm can be either manual reset (requires human intervention to re-start the unit) or automatic Warning run the unit in fall-back mode. Example: if outdoor air humidity sensor is not working, the economizer runs in dry-bulb mode. Events are accessible through optional local service terminal which display the current events and display history of past events (up to 99 alarms and 99 warnings). # **Customer option module** For Customer option module refer to wiring diagram supplied with the unit for detailled information. ## **Customer option module** Input/Output are defined with the optional service terminal. Outputs are only with dry contacts. List of I/Os through universal pins | | Emergency Stop | | | |---------------------|-----------------------------------|-------------------------------|--------------------------| | | External Auto / Off | Takes precedence ove
THS04 | r | | | Circuit1 Disable | | | | | Circuit2 Disable | | | | | Compressor 1A Disable | | | | | Compressor 1B Disable | | | | | Compressor 2A Disable | | | | | Compressor 2B Disable | | | | | Occupancy Sensor | | | | | Timed Override occupied initiate | | | | | Timed Override occupied terminate | | | | | Aux. Heat Disable | | | | | Mech to Aux Heating
changeover | | | | External
Control | Pressurize override | | | | (Digital In) | Purge override | | | | | Exhaust override | | | | | CMP1 * | Conventional
Thermostat | | | | CMP2 * | Conventional
Thermostat | 7 | | | CMP3 * | Conventional
Thermostat | open = OFF / closed = ON | | | CMP4 * | Conventional
Thermostat | close | | | SOV * | Conventional
Thermostat | 0円/ | | | AuxHeat1 * | Conventional
Thermostat | = uado | | | AuxHeat2 * | Conventional
Thermostat | J | | | IDFan * | Conventional
Thermostat | | | | Firestat | | | The main module should be configured with the appropriate I/O. ## Operation with a conventional thermostat For overall wiring, consult wiring diagram supplied with the unit. | Active Unit Mode | Conv Th | O control | |------------------|----------|-----------| | OFF | Inactive | - | | Auto | Active | enabled | | Heat | Active | disabled | | Cool | Active | disabled | ## **Customer option module** #### **Economizer control** ### **Demand Control Ventilation** The 10 I/O for economizer allow 4 strategies for Demand control ventilation #1: Fixed Ventilation (design ventilation) It is based on design occupancy of the zone. Occupied standby setpoint = 0.6L/s per m² (ASHRAE62.1) x Surface Occupied setpoint = 4.72L/s per person (ASHRAE62.1) x DesignOccupants# + Occupied standby setpoint #2: Occupancy-based ventilation – requires an occupancy sensor During occupied hours, depending on occupancy sensor, we can switch between 2 setpoints No people detected: Occupied Standby Setpoint = 0.6L/s per m² x Surface People detected: Occupied Setpoint = 4.72L/s per person x DesignOccupants# + Occupied Standby Setpoint #3: CO₂-based ventilation – requires a space CO₂ level information (sensor or BAS) Modulates between Occupied setpoint and Occupied Standby setpoint with Damper control. # **Emergency Ventilation override** Three possible external requests, with following priority order - 1. Pressurize - 2. Purge - 3. Exhaust When those override modes are activated, heating or cooling are turned OFF. If they were ON, the emergency stop mode is used. Those override modes can be activated through local request or BAS. Emergency override command: - 1. Normal - 2. Pressurize - 3. Depressurize - 4. Purge - 5. Shutdown - 6. Fire ## Table 1 - Override mode | Override mode | Pressurize | Purge | Exhaust
(Depressurize) | Smoke Detector | Shutdown
(Emergency Stop/
Firestat) | |---------------|-----------------|-----------------|---------------------------|----------------|---| | ID Fan | ON - Full Speed | ON - Full Speed | OFF | OFF | OFF | | OA Damper | Open 100% | Open 100% | Close 0% | Open 100% | Close 0% | | Exhaust Fan | OFF | ON | ON | OFF | OFF | | Heat/Cool | OFF | OFF | OFF | OFF | OFF | ## **Opening Airflow Damper** The mechanical opening of the damper is managed by the actuator which is adjusted by Trane controller. In Free cooling mode, fresh air flow can be adjusted through optional terminal but the maximum opening airflow damper minimum position is set at 50% by default and maximum factory setting is 95%. At installation, Minimum Fresh Air Percentage during occupied time have to be adjusted. # **Operation** #### **Test Procedures** Operating checklist before start-up - Review submittals for rooftop and accessories as well as main wiring diagrams and options shipped with the unit - Unit is level, with sufficient clearance all round - Duct network is correctly sized according to the unit configuration, insulated, and water-tight - Condensate drainage line is correctly sized, equipped with a trap, and sloped - Filters are in position, of correct size and quantity and clean - Wiring is correctly sized and connected in accordance with wiring diagrams - Power supply lines are protected by recommended fuses and correctly earthed - Thermostat is correctly wired and positioned - Unit is checked for refrigerant charge and leaks - Indoor and outdoor fans rotate freely and are fixed on shafts - · Supply fan rotation speed is set - Access panels and doors are replaced to prevent air entering and risks of injury **WARNING!** If any operating checks must be performed with the unit operating, it is the technician's responsibility to recognize any possible hazards and proceed in a safe manner. Failure to do so could result in severe personal injury or death due to electrical shock or contact with moving parts. #### Power-up initialization **CAUTION!** Before proceeding with any test procedure or operation, make sure that crankcase heaters have been energized for at least 8 hours. #### Starting the unit in cooling mode Before start-up, ensure that all power cables are tightened. Verify that the unit airflow rate is adjusted. #### Operating pressures After the unit has operated in cooling mode for a short period of time, install pressure gauges on the gauge ports of the discharge and suction line valves. **Note:** Always route refrigerant hoses through the port hole provided and ensure that the compressor access panel is in place. #### Final installation checklist - Are all power cables tightened? Check torque of power cables contact! - Is the condenser fan and indoor blower operating correctly, i.e. correct rotation and without undue noise? - Are the compressors operating correctly and has the system been checked for leaks? - Have the voltage and running currents been checked to determine if they are within limits? - Have the air discharge grilles been adjusted to balance the system? - Has the ductwork been checked for air leaks and any condensation? - Has the air temperature rise been checked? - Has the indoor airflow been checked and adjusted if necessary? - Has the unit been checked for tubing and sheet metal rattles or any unusual noises? - Are all covers and panels in place and properly fastened? To keep the unit operating safely and efficiently, the manufacturer recommends that a qualified service technician check the entire system at least once each year, or more frequently if conditions warrant. Upon power initialization, the
control performs selfdiagnostic checks to insure that all internal controls are functioning. It checks the configuration parameters against the components connected to the system. ## **Operation** #### Gas Burner first start The PCH burners are supplied with factory settings according to model number gas selection. They are tested for the gas specified on the burner nameplate. However it is required to - Check the gas category - Check the gas intake pressure on the gas valve - Perform the combustion analysis to verify that the level of flue gases corresponds to the data contained in general data table or in manufacturer IOM manual. When turned on for the first time, the pilot burner may not ignite due to air kept in gas hose. There is the need to reset the equipment and repeat the operation until gas hose is purged and it ignites. Consult electrical drawing and supplier IOM shipped with the unit. Figure 27 - Example of PCH burner Table 2 - Marking Category of gas section in different countries | CATEGORY | | G20 | G25 | G31 | |--------------------------|------|----------------|-------------------------------------|-----------------| | | | | FR | | | II _{2Esi3P} | mbar | 20 | 25 | 37 | | II _{2H3B/P} | | DK, FI, GR, SE | , NO, IT, CZ, EE,
BG, RO, HR, TR | LT, SI, AL, MK, | | 21132/1 | mbar | 20 | - | 30 | | Hausa (a | | | AT, CH | | | II _{2H3B/P} | mbar | 20 | - | 50 | | Hausan (n. | | | HU | | | II ₂ HS3B/P | mbar | 25 | | - | | II. | | | NL | | | II _{2L3B/P} | mbar | - | 25 | 30/37/50 | | Harras | | | ES, GB, IE, PT, S | K | | II _{2H3P} | mbar | 20 | - | 37 | | T | | | BE < 70kW | | | I _{2E(S)} | mbar | 20 | 25 | - | | T | | | BE > 70kW | | | ^I 2E(R) | mbar | 20 | 25 | - | | Hori i on in | | | PL | | | II _{2ELwLs3B/P} | mbar | 20 | - | 37 | | II | | | LU | | | II _{2E3P} | mbar | 20 | - | 30/37/50 | | II _{2ELL3B/P} | | | DE | | | | mbar | 20 | 20 | 50 | | I _{3P} | | | BE | | | | mbar | - | - | 37 | | I _{2H} | | | LV | | | | mbar | 20 | - | - | Premix burner working cycle - 1. Heat request signal coming from CH536 - 2. Burner fan starts to pre-wash combustion chamber - 3. EV1 and EVP gas valves open to allow gas to feed pilot burner - 4. Start up electrode gives ignition sparks on pilot burner - 5. EV2 main gas valve opens to gas feed main burner - 6. Combustion starts thanks to pilot flame ignition - Pilot and main burners work together for a shor time, then the electronic boards close EVP and stops the pilot Figure 28 - Premix burner of working cycle ## Interface panel PCH Red 3 digit LCD display Module status (rdy, On, Off, Fxx...) 3 levels menu: - I/O (Input/Output) - PAR (parameters) - Flt (Faults) PRH Green light: power supply red lights: faults - diagnostics available by pressing button for more than 5 sec. Reset button Summer/winter button ## Maintenance #### **End user Routine Maintenance** Some of the periodic maintenance functions for the unit can be undertaken by the end user. This includes replacing (disposable) or cleaning (permanent) air filters, cleaning unit cabinet, cleaning the condenser coil, and carrying out a general unit inspection on a regular basis. **WARNING!** Disconnect the power supply before removing access panels to service the unit. Failure to disconnect power before attempting any servicing can result in severe injury or death. #### Air filters It is very important for the central duct system air filters to be kept clean. These should be inspected at least once a month when the system is in constant operation (in new buildings, the filters should be checked every week for the first four weeks). If disposable-type filters are used, they should only be replaced with ones of the same type and size. The economizer fresh air filter should be inspected (washed if needed) at least once a month. **Note:** Do not attempt to clean disposable filters. Permanent filters can be cleaned by washing with a mild detergent and water. Ensure that the filters are thoroughly dry before reinstalling them in the unit (or duct system). **Note:** Replace permanent filters when required or at least annually if washing fails to clean them, or they show signs of deterioration. Be sure to use the same type and size as were originally installed. #### **Condenser coil** Unfiltered air circulates through the unit's condenser coil and can cause the coil's surface to become clogged with dust, dirt, etc. To clean the coil, brush the coil surface in the direction of the fins with a soft bristled brush. Keep all vegetation away from the condenser coil area. ### Hot water coil (option) Stop the unit. Do not disconnect the main supply to the unit. This will permit the anti-frost protection to continue to operate, and avoid water to freeze-up in the coil. #### Service Technician Maintenance Before the cooling season, your service technician may examine the following areas of your unit: - · Filters, for cleaning or replacement - Motors and drives system components - · Economizer gaskets, for replacement if necessary - Condenser coils, for cleaning - · Safety controls, for mechanical cleaning - Electrical components and wiring, for replacement and tightening of connections as necessary - · Condensate drain, for cleaning - Unit duct connections, to ensure they are physically sound and sealed to the unit casing - · Unit mounting support, to ensure that it is sound - The unit, to ensure there is no obvious deterioration # Before the heating season, your service technician may examine the following areas of your unit: - The unit, to ensure that the condenser coil can receive the required airflow (that the condenser fan grille is not obstructed) - The control panel wiring, to verify that all electrical connections are tight, and that wire insulation is intact ## **Troubleshooting Alarm and Warnings** The optional control display has the ability to provide the service personnel with some unit diagnostics and system status information. - Step the system through all of the available modes, and verify operation of all outputs, controls, and modes. If a problem in operation is noted in any mode, proceed to troubleshooting search. - Refer to the individual component test procedures if other microelectronic components are suspect. - 3. In addition review carefully the components which can lead to the alarm: temperature sensor, zone temperature sensor, clogged filter switch # Recommended service routine frequencies As a commitment to our customers, we have created a wide service network staffed with experienced factory authorized technicians. At Trane we offer all the benefits of after sales service direct from the manufacturer and we are committed to our mission statement to provide efficient customer care. We would be delighted to discuss your individual requirement with you. For further information regarding Trane maintenance agreements please contact your local TRANE sales office. #### RECOMMENDED YEARLY SERVICE ROUTINE FREQUENCIES | Year | Commissioning | 500 / 1000 hr Visit | Annual Maintenance | Inspection Visit | |------|---------------|---------------------|--------------------|------------------| | 1 | x | x | | XX | | 2 | | | X | XXX | | 3 | | | X | XXX | | 4 | | | X | XXX | | 5 | | | X | XXX | | 6 | | | X | XXX | | 7 | | | X | XXX | | 8 | | | X | XXX | | 9 | | | X | XXX | | 10 | | | X | XXX | | +10 | | | Every year | 3 Every year | This timetable is applicable to units operating in normal conditions with an average of 4000 hours per year. If operating conditions are abnormally severe, an individual timetable must be made for that unit. # Maintenance routine ## **Commissioning** - Check installation of equipment/pre-commission. - Configure unit control module. - Calibrate controls. - Check operational set points and performance. - Check operation of all safety devices. - Megger the motor compressor windings. - Check unit operation. - Record operating temperatures pressures, amperages and voltage. - Carry out leak test. - Fill the start up log sheet and review with the operator. #### **Gas Heat** - Check operation of gas train components. - Check burner sequence of operation. - Check combustion blower assembly. - Check gas pressure to unit. - Inspect flame condition. - Carry out flue gas analysis. #### **Electric Heat** - Inspect all electrical connections. - Verify correct operation of heating elements. #### **Hot Water/Steam** - Inspect valves and traps. - Verify operation of heating. #### 500/1000 hours visit - Visit at the end of running in period. - Replace compressor oil on all circuit's. - Replace liquid line drier cores on each circuit (if applicable). - Carry out leak test. - Inspect contacts and tighten terminals. - Record operating pressures, amperages and voltage. - Check condition of evaporator & condenser coils. - Check operation of machines/compare conditions of operation against original commissioning data. - Fill out the 500/1000 hours visit log sheet and review with the operator. - Carry out flue gas analysis (Gas Heating). - Log book to be stamped validating 500/1000hr. visit. #### Inspection visit - Carry out leak test. - Inspect contacts and tighten terminals. - Record operating pressures, amperages and voltage. - Check condition of evaporator & condenser coils. - Check operation of machines/compare conditions of operation against original commissioning data. - Carry out flue gas analysis (Gas Heating). - Complete log sheet and review with the operator. ### **Annual Maintenance** - Check operational set points and performance. - Calibrate controls. - Check operation of all safety devices. - Inspect contacts & tighten terminals. - Megger the motor compressor windings. - Record operating pressures, amperages and voltage. - Carry out leak test. - Check configuration of unit control module. - Replace line drier cores on each circuit (if applicable). - Carry out system analysis. - Change the oil as required based upon results of the Trane laboratory analysis. - Lubricate
motors/dampers/bearings (where applicable). - Check condition of evaporator & condenser coils. - Check operation of machines/compare conditions of operation against original commissioning data. - Complete annual maintenance visit log sheet and review with the operator. #### **Gas Heat** - Check operation of gas train components. - Check burner sequence of operation. - Check combustion blower assembly clean if required. - Check gas pressure to unit. - Inspect flame condition. - Carry out flue gas analysis. ## **Electric Heat** - Inspect all electrical connections. - Verify correct operation of heating elements. #### **Hot Water/Steam** - Inspect valves and traps. - Verify operation of heating. - Inspect coil. # **Additionnal services** ## Oil analysis Trane Oil Analysis is a predictive tool used to detect minor issues before they become major problems. It also reduces failure detection time and allows planning for appropriate maintenance. Oil changes can be reduced by half resulting in lower operating costs and a lower impact on the environment. ## Refrigerant analysis This Service includes a thorough analysis for contamination and solution upgrade. It is recommended that this analysis be performed every six months. ## **Trane Select Agreements** Trane Select Agreements are programs tailored to your needs, your business and your application. They offer four different levels of coverage. From preventive maintenance plans to fully comprehensive solutions, you have the option of selecting the coverage that best suits your requirements. ## 5 years motor-compressor warranty This Service will provide a 5 years part and labor warranty for the motor compressor only. This Service is only available for units covered by a 5 years Maintenance Contract. ## **Energy enhancement** With Trane Building Advantage you can now explore cost effective ways to optimize the energy efficiency of your existing system and generate immediate savings. Energy management solutions are not only for new systems or buildings. Trane Building Advantage offers solutions designed to unlock energy savings in your existing system. | Trane - by Trane Technologies (NYSE: TT), a global climate innovator - crea efficient indoor environments for commercial and residential applications please visit trane.com or tranetechnologies.com. | | |--|---------------------------------| | Trane has a policy of continuous product and product data improvement and reserves the right to clearly without notice. We are committed to using environmentally conscious print practices. | hange design and specifications | | PT SVV060C CP July 2020 | | | RT-SVX060C-GB July 2020
Supersedes RT-SVX060B-GB (June 2020) | © 2020 Trane |